Properties

Label 2-159936-1.1-c1-0-105
Degree $2$
Conductor $159936$
Sign $1$
Analytic cond. $1277.09$
Root an. cond. $35.7364$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 9-s − 4·11-s + 13-s − 4·15-s − 17-s + 19-s + 2·23-s + 11·25-s − 27-s − 6·29-s + 9·31-s + 4·33-s + 11·37-s − 39-s − 10·41-s + 7·43-s + 4·45-s − 6·47-s + 51-s + 6·53-s − 16·55-s − 57-s + 8·59-s + 6·61-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1/3·9-s − 1.20·11-s + 0.277·13-s − 1.03·15-s − 0.242·17-s + 0.229·19-s + 0.417·23-s + 11/5·25-s − 0.192·27-s − 1.11·29-s + 1.61·31-s + 0.696·33-s + 1.80·37-s − 0.160·39-s − 1.56·41-s + 1.06·43-s + 0.596·45-s − 0.875·47-s + 0.140·51-s + 0.824·53-s − 2.15·55-s − 0.132·57-s + 1.04·59-s + 0.768·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(159936\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1277.09\)
Root analytic conductor: \(35.7364\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 159936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.447466744\)
\(L(\frac12)\) \(\approx\) \(3.447466744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + 3 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22272550258784, −12.99557587784001, −12.52753479990945, −11.75203824624899, −11.31130016978195, −10.87353194284035, −10.28741624815880, −9.963490098503602, −9.699133231731558, −9.012341629867414, −8.554103695047155, −7.963632092961905, −7.330894997884901, −6.829822266324418, −6.214952299468939, −5.913428478024616, −5.464128390313904, −4.875391061204422, −4.620931845603843, −3.626840115200506, −2.962027429281695, −2.315940328828496, −2.029761893834458, −1.126124478091395, −0.6088048816840150, 0.6088048816840150, 1.126124478091395, 2.029761893834458, 2.315940328828496, 2.962027429281695, 3.626840115200506, 4.620931845603843, 4.875391061204422, 5.464128390313904, 5.913428478024616, 6.214952299468939, 6.829822266324418, 7.330894997884901, 7.963632092961905, 8.554103695047155, 9.012341629867414, 9.699133231731558, 9.963490098503602, 10.28741624815880, 10.87353194284035, 11.31130016978195, 11.75203824624899, 12.52753479990945, 12.99557587784001, 13.22272550258784

Graph of the $Z$-function along the critical line