Properties

Label 2-1530-1.1-c1-0-5
Degree $2$
Conductor $1530$
Sign $1$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 2·7-s + 8-s − 10-s + 2·11-s − 2·14-s + 16-s − 17-s + 4·19-s − 20-s + 2·22-s + 8·23-s + 25-s − 2·28-s + 6·29-s + 4·31-s + 32-s − 34-s + 2·35-s + 4·38-s − 40-s + 4·41-s − 4·43-s + 2·44-s + 8·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s + 0.353·8-s − 0.316·10-s + 0.603·11-s − 0.534·14-s + 1/4·16-s − 0.242·17-s + 0.917·19-s − 0.223·20-s + 0.426·22-s + 1.66·23-s + 1/5·25-s − 0.377·28-s + 1.11·29-s + 0.718·31-s + 0.176·32-s − 0.171·34-s + 0.338·35-s + 0.648·38-s − 0.158·40-s + 0.624·41-s − 0.609·43-s + 0.301·44-s + 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.435012470\)
\(L(\frac12)\) \(\approx\) \(2.435012470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.436642361793284157931153389827, −8.722792546783662923335458147967, −7.65685461062244418021064264797, −6.87195763147489336075779868647, −6.29099144055718447981749957447, −5.21611144189162974556770560246, −4.40220651056535076491762714778, −3.42089241644053502284469489537, −2.72502778978520499524892639728, −1.04569548611098429720594531845, 1.04569548611098429720594531845, 2.72502778978520499524892639728, 3.42089241644053502284469489537, 4.40220651056535076491762714778, 5.21611144189162974556770560246, 6.29099144055718447981749957447, 6.87195763147489336075779868647, 7.65685461062244418021064264797, 8.722792546783662923335458147967, 9.436642361793284157931153389827

Graph of the $Z$-function along the critical line