Properties

Label 2-140790-1.1-c1-0-43
Degree $2$
Conductor $140790$
Sign $1$
Analytic cond. $1124.21$
Root an. cond. $33.5292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 4·11-s + 12-s − 13-s + 15-s + 16-s − 6·17-s − 18-s + 20-s − 4·22-s + 8·23-s − 24-s + 25-s + 26-s + 27-s − 6·29-s − 30-s + 8·31-s − 32-s + 4·33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.223·20-s − 0.852·22-s + 1.66·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s − 1.11·29-s − 0.182·30-s + 1.43·31-s − 0.176·32-s + 0.696·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 140790 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140790 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(140790\)    =    \(2 \cdot 3 \cdot 5 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1124.21\)
Root analytic conductor: \(33.5292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 140790,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.250496419\)
\(L(\frac12)\) \(\approx\) \(3.250496419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35135391611381, −12.96303078338819, −12.57561138093372, −11.78108354402824, −11.41569250297205, −10.97632787076618, −10.53795548812907, −9.744759533526017, −9.462258115777113, −9.132194159270668, −8.659094468896426, −8.207086594916941, −7.474534639330588, −7.097582989600523, −6.578477410885193, −6.175863042159101, −5.561344836130153, −4.655144223503600, −4.386221008756392, −3.675918318611472, −2.905681293037062, −2.496740328407528, −1.891063593912267, −1.174137675707518, −0.6316092594028959, 0.6316092594028959, 1.174137675707518, 1.891063593912267, 2.496740328407528, 2.905681293037062, 3.675918318611472, 4.386221008756392, 4.655144223503600, 5.561344836130153, 6.175863042159101, 6.578477410885193, 7.097582989600523, 7.474534639330588, 8.207086594916941, 8.659094468896426, 9.132194159270668, 9.462258115777113, 9.744759533526017, 10.53795548812907, 10.97632787076618, 11.41569250297205, 11.78108354402824, 12.57561138093372, 12.96303078338819, 13.35135391611381

Graph of the $Z$-function along the critical line