Properties

Label 2-138675-1.1-c1-0-24
Degree $2$
Conductor $138675$
Sign $1$
Analytic cond. $1107.32$
Root an. cond. $33.2764$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s + 3·7-s − 3·8-s + 9-s − 5·11-s + 12-s + 3·14-s − 16-s + 2·17-s + 18-s − 6·19-s − 3·21-s − 5·22-s + 2·23-s + 3·24-s − 27-s − 3·28-s − 8·29-s − 10·31-s + 5·32-s + 5·33-s + 2·34-s − 36-s − 4·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 1.13·7-s − 1.06·8-s + 1/3·9-s − 1.50·11-s + 0.288·12-s + 0.801·14-s − 1/4·16-s + 0.485·17-s + 0.235·18-s − 1.37·19-s − 0.654·21-s − 1.06·22-s + 0.417·23-s + 0.612·24-s − 0.192·27-s − 0.566·28-s − 1.48·29-s − 1.79·31-s + 0.883·32-s + 0.870·33-s + 0.342·34-s − 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138675\)    =    \(3 \cdot 5^{2} \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(1107.32\)
Root analytic conductor: \(33.2764\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 138675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
43 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91904082399060, −13.25187152959706, −12.87977629194305, −12.63299895326357, −12.21163684558233, −11.29183760757791, −11.18749066470407, −10.71825654012868, −10.18198637908907, −9.588654922270333, −8.967520212670477, −8.585725738570554, −7.967493042654693, −7.524576374377543, −7.105551971297982, −6.203875311493980, −5.683690944123257, −5.391298018861257, −4.997913501115130, −4.305610170587856, −4.068568625818754, −3.241449458804129, −2.610258966398426, −1.915926746247973, −1.283633260161325, 0, 0, 1.283633260161325, 1.915926746247973, 2.610258966398426, 3.241449458804129, 4.068568625818754, 4.305610170587856, 4.997913501115130, 5.391298018861257, 5.683690944123257, 6.203875311493980, 7.105551971297982, 7.524576374377543, 7.967493042654693, 8.585725738570554, 8.967520212670477, 9.588654922270333, 10.18198637908907, 10.71825654012868, 11.18749066470407, 11.29183760757791, 12.21163684558233, 12.63299895326357, 12.87977629194305, 13.25187152959706, 13.91904082399060

Graph of the $Z$-function along the critical line