Properties

Label 2-360e2-1.1-c1-0-67
Degree $2$
Conductor $129600$
Sign $-1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 3·11-s − 4·13-s − 3·17-s − 4·19-s + 6·23-s − 6·29-s − 8·31-s + 8·37-s + 6·41-s + 43-s − 12·47-s + 9·49-s + 9·59-s − 8·61-s + 4·67-s − 6·71-s − 14·73-s + 12·77-s − 8·79-s − 9·83-s + 9·89-s + 16·91-s + 7·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.904·11-s − 1.10·13-s − 0.727·17-s − 0.917·19-s + 1.25·23-s − 1.11·29-s − 1.43·31-s + 1.31·37-s + 0.937·41-s + 0.152·43-s − 1.75·47-s + 9/7·49-s + 1.17·59-s − 1.02·61-s + 0.488·67-s − 0.712·71-s − 1.63·73-s + 1.36·77-s − 0.900·79-s − 0.987·83-s + 0.953·89-s + 1.67·91-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35582890224136, −13.11167964837975, −12.84032937998952, −12.65257971994275, −11.77339871373245, −11.22932118140975, −10.89877331579179, −10.16621107012997, −9.972822118121600, −9.242320968118900, −9.079312810634582, −8.449811415216074, −7.558452518763458, −7.398719111589713, −6.846019796644321, −6.219422760503557, −5.848138530832417, −5.168663560224891, −4.646696773214769, −4.062727419244147, −3.362250046683918, −2.839544139583022, −2.396132131887028, −1.719601999274338, −0.5225622868916381, 0, 0.5225622868916381, 1.719601999274338, 2.396132131887028, 2.839544139583022, 3.362250046683918, 4.062727419244147, 4.646696773214769, 5.168663560224891, 5.848138530832417, 6.219422760503557, 6.846019796644321, 7.398719111589713, 7.558452518763458, 8.449811415216074, 9.079312810634582, 9.242320968118900, 9.972822118121600, 10.16621107012997, 10.89877331579179, 11.22932118140975, 11.77339871373245, 12.65257971994275, 12.84032937998952, 13.11167964837975, 13.35582890224136

Graph of the $Z$-function along the critical line