Properties

Label 2-122400-1.1-c1-0-22
Degree $2$
Conductor $122400$
Sign $1$
Analytic cond. $977.368$
Root an. cond. $31.2629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 4·11-s − 2·13-s − 17-s − 8·19-s + 10·29-s + 10·31-s + 8·37-s + 2·41-s + 4·43-s − 6·47-s + 9·49-s + 6·53-s + 8·59-s − 2·61-s − 4·67-s − 12·73-s − 16·77-s − 10·79-s + 6·83-s − 8·89-s − 8·91-s + 4·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s − 1.20·11-s − 0.554·13-s − 0.242·17-s − 1.83·19-s + 1.85·29-s + 1.79·31-s + 1.31·37-s + 0.312·41-s + 0.609·43-s − 0.875·47-s + 9/7·49-s + 0.824·53-s + 1.04·59-s − 0.256·61-s − 0.488·67-s − 1.40·73-s − 1.82·77-s − 1.12·79-s + 0.658·83-s − 0.847·89-s − 0.838·91-s + 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(977.368\)
Root analytic conductor: \(31.2629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 122400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.502072125\)
\(L(\frac12)\) \(\approx\) \(2.502072125\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34937577609794, −13.24396373172980, −12.53077161481355, −12.11811180468496, −11.50634786999316, −11.21749244639949, −10.56435040702281, −10.20420307278605, −9.929853466413737, −8.880120392611796, −8.536415443855135, −8.201137942650025, −7.692921337932297, −7.265274837694810, −6.395495029066631, −6.167500815179910, −5.322818880482883, −4.825709889463697, −4.460229507841924, −4.118987934137518, −2.872892968379254, −2.567443878839890, −2.059710666802725, −1.219703429854836, −0.5003855195676510, 0.5003855195676510, 1.219703429854836, 2.059710666802725, 2.567443878839890, 2.872892968379254, 4.118987934137518, 4.460229507841924, 4.825709889463697, 5.322818880482883, 6.167500815179910, 6.395495029066631, 7.265274837694810, 7.692921337932297, 8.201137942650025, 8.536415443855135, 8.880120392611796, 9.929853466413737, 10.20420307278605, 10.56435040702281, 11.21749244639949, 11.50634786999316, 12.11811180468496, 12.53077161481355, 13.24396373172980, 13.34937577609794

Graph of the $Z$-function along the critical line