Properties

Label 2-12138-1.1-c1-0-20
Degree $2$
Conductor $12138$
Sign $1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 3·5-s + 6-s + 7-s + 8-s + 9-s + 3·10-s − 11-s + 12-s + 4·13-s + 14-s + 3·15-s + 16-s + 18-s + 3·20-s + 21-s − 22-s + 8·23-s + 24-s + 4·25-s + 4·26-s + 27-s + 28-s − 29-s + 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s + 0.288·12-s + 1.10·13-s + 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.235·18-s + 0.670·20-s + 0.218·21-s − 0.213·22-s + 1.66·23-s + 0.204·24-s + 4/5·25-s + 0.784·26-s + 0.192·27-s + 0.188·28-s − 0.185·29-s + 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.918302772\)
\(L(\frac12)\) \(\approx\) \(6.918302772\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.39685270281133, −15.60587120274212, −14.99983473025684, −14.68818941848778, −13.92774584144323, −13.54402242262254, −13.12166109394062, −12.74793342116757, −11.77821869717031, −11.17726545607402, −10.58053570125726, −10.09827239169486, −9.259202391639076, −8.878368394114606, −8.149226883635928, −7.393020092630504, −6.674917688448702, −6.137364363503654, −5.379637480025929, −4.975139519872507, −4.033595474168197, −3.265221332261065, −2.593607791999252, −1.802311219555041, −1.152377560514915, 1.152377560514915, 1.802311219555041, 2.593607791999252, 3.265221332261065, 4.033595474168197, 4.975139519872507, 5.379637480025929, 6.137364363503654, 6.674917688448702, 7.393020092630504, 8.149226883635928, 8.878368394114606, 9.259202391639076, 10.09827239169486, 10.58053570125726, 11.17726545607402, 11.77821869717031, 12.74793342116757, 13.12166109394062, 13.54402242262254, 13.92774584144323, 14.68818941848778, 14.99983473025684, 15.60587120274212, 16.39685270281133

Graph of the $Z$-function along the critical line