Properties

Degree $2$
Conductor $1122$
Sign $-1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 2·5-s + 6-s − 4·7-s + 8-s + 9-s − 2·10-s − 11-s + 12-s − 4·13-s − 4·14-s − 2·15-s + 16-s − 17-s + 18-s − 8·19-s − 2·20-s − 4·21-s − 22-s + 24-s − 25-s − 4·26-s + 27-s − 4·28-s − 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.301·11-s + 0.288·12-s − 1.10·13-s − 1.06·14-s − 0.516·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s − 0.447·20-s − 0.872·21-s − 0.213·22-s + 0.204·24-s − 1/5·25-s − 0.784·26-s + 0.192·27-s − 0.755·28-s − 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1122 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1122 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1122\)    =    \(2 \cdot 3 \cdot 11 \cdot 17\)
Sign: $-1$
Motivic weight: \(1\)
Character: $\chi_{1122} (1, \cdot )$
Sato-Tate group: $\mathrm{SU}(2)$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1122,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.59946535758159, −19.19184181452814, −18.63855104984210, −17.23211452279612, −16.70976435431377, −15.86848459236044, −15.22132697512076, −15.01955523185509, −13.82292427833942, −13.28778089360189, −12.44958587510269, −12.18536151572100, −11.05285942050468, −10.15695970899537, −9.560427624413729, −8.435750833845311, −7.743686781990299, −6.747549039737825, −6.265116754929520, −4.802770853514411, −4.068044499824602, −3.142984048202357, −2.358799966264125, 0, 2.358799966264125, 3.142984048202357, 4.068044499824602, 4.802770853514411, 6.265116754929520, 6.747549039737825, 7.743686781990299, 8.435750833845311, 9.560427624413729, 10.15695970899537, 11.05285942050468, 12.18536151572100, 12.44958587510269, 13.28778089360189, 13.82292427833942, 15.01955523185509, 15.22132697512076, 15.86848459236044, 16.70976435431377, 17.23211452279612, 18.63855104984210, 19.19184181452814, 19.59946535758159

Graph of the $Z$-function along the critical line