| L(s) = 1 | − 2·2-s − 3-s + 2·4-s + 5-s + 2·6-s − 2·7-s − 2·9-s − 2·10-s + 11-s − 2·12-s + 4·13-s + 4·14-s − 15-s − 4·16-s − 2·17-s + 4·18-s + 2·20-s + 2·21-s − 2·22-s − 23-s − 4·25-s − 8·26-s + 5·27-s − 4·28-s + 2·30-s + 7·31-s + 8·32-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s + 0.816·6-s − 0.755·7-s − 2/3·9-s − 0.632·10-s + 0.301·11-s − 0.577·12-s + 1.10·13-s + 1.06·14-s − 0.258·15-s − 16-s − 0.485·17-s + 0.942·18-s + 0.447·20-s + 0.436·21-s − 0.426·22-s − 0.208·23-s − 4/5·25-s − 1.56·26-s + 0.962·27-s − 0.755·28-s + 0.365·30-s + 1.25·31-s + 1.41·32-s + ⋯ |
Λ(s)=(=(11s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(11s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
| L(1) |
≈ |
0.2538418608 |
| L(21) |
≈ |
0.2538418608 |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
|---|
| bad | 11 | 1−T | |
| good | 2 | 1+pT+pT2 | 1.2.c |
| 3 | 1+T+pT2 | 1.3.b |
| 5 | 1−T+pT2 | 1.5.ab |
| 7 | 1+2T+pT2 | 1.7.c |
| 13 | 1−4T+pT2 | 1.13.ae |
| 17 | 1+2T+pT2 | 1.17.c |
| 19 | 1+pT2 | 1.19.a |
| 23 | 1+T+pT2 | 1.23.b |
| 29 | 1+pT2 | 1.29.a |
| 31 | 1−7T+pT2 | 1.31.ah |
| 37 | 1−3T+pT2 | 1.37.ad |
| 41 | 1+8T+pT2 | 1.41.i |
| 43 | 1+6T+pT2 | 1.43.g |
| 47 | 1−8T+pT2 | 1.47.ai |
| 53 | 1+6T+pT2 | 1.53.g |
| 59 | 1−5T+pT2 | 1.59.af |
| 61 | 1−12T+pT2 | 1.61.am |
| 67 | 1+7T+pT2 | 1.67.h |
| 71 | 1+3T+pT2 | 1.71.d |
| 73 | 1−4T+pT2 | 1.73.ae |
| 79 | 1+10T+pT2 | 1.79.k |
| 83 | 1+6T+pT2 | 1.83.g |
| 89 | 1−15T+pT2 | 1.89.ap |
| 97 | 1+7T+pT2 | 1.97.h |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−20.37926046435010943649954977728, −19.18572497185224141236190272085, −17.94143357345934104539279635252, −17.03361032038062445390026939405, −15.91407260330038416331639924088, −13.56863905712999451342489435843, −11.45125861034521058353374083886, −10.03550909718107888433464868208, −8.603539619290756001226038948684, −6.36261389471308870138602900888,
6.36261389471308870138602900888, 8.603539619290756001226038948684, 10.03550909718107888433464868208, 11.45125861034521058353374083886, 13.56863905712999451342489435843, 15.91407260330038416331639924088, 17.03361032038062445390026939405, 17.94143357345934104539279635252, 19.18572497185224141236190272085, 20.37926046435010943649954977728