Properties

Label 2-106560-1.1-c1-0-1
Degree $2$
Conductor $106560$
Sign $1$
Analytic cond. $850.885$
Root an. cond. $29.1699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 3·11-s − 2·13-s − 3·17-s − 2·19-s + 25-s − 3·29-s − 31-s + 35-s − 37-s − 9·41-s − 11·43-s − 6·49-s − 9·53-s − 3·55-s − 6·59-s + 61-s + 2·65-s − 8·67-s + 12·71-s + 8·73-s − 3·77-s − 4·79-s − 6·83-s + 3·85-s + 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.904·11-s − 0.554·13-s − 0.727·17-s − 0.458·19-s + 1/5·25-s − 0.557·29-s − 0.179·31-s + 0.169·35-s − 0.164·37-s − 1.40·41-s − 1.67·43-s − 6/7·49-s − 1.23·53-s − 0.404·55-s − 0.781·59-s + 0.128·61-s + 0.248·65-s − 0.977·67-s + 1.42·71-s + 0.936·73-s − 0.341·77-s − 0.450·79-s − 0.658·83-s + 0.325·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106560\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(850.885\)
Root analytic conductor: \(29.1699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 106560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2847621721\)
\(L(\frac12)\) \(\approx\) \(0.2847621721\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + T + p T^{2} \) 1.31.b
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.60755485004924, −13.22179269839967, −12.69800615575691, −12.12143236899660, −11.88342752198650, −11.17671618959883, −10.92276404755373, −10.22966626941400, −9.622827799250559, −9.376964157545288, −8.701469337032288, −8.251337329276619, −7.771707248819600, −6.983287798713199, −6.697626229514984, −6.312997535370644, −5.502133127243376, −4.895515484854287, −4.460455600345223, −3.748247108080251, −3.369784047546824, −2.664771793426295, −1.857670117327449, −1.368764750020465, −0.1622434275610257, 0.1622434275610257, 1.368764750020465, 1.857670117327449, 2.664771793426295, 3.369784047546824, 3.748247108080251, 4.460455600345223, 4.895515484854287, 5.502133127243376, 6.312997535370644, 6.697626229514984, 6.983287798713199, 7.771707248819600, 8.251337329276619, 8.701469337032288, 9.376964157545288, 9.622827799250559, 10.22966626941400, 10.92276404755373, 11.17671618959883, 11.88342752198650, 12.12143236899660, 12.69800615575691, 13.22179269839967, 13.60755485004924

Graph of the $Z$-function along the critical line