Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 13 \cdot 1301 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 5·11-s + 12-s + 13-s + 14-s − 15-s + 16-s + 4·17-s + 18-s + 6·19-s − 20-s + 21-s + 5·22-s − 4·23-s + 24-s − 4·25-s + 26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s + 0.288·12-s + 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 1.37·19-s − 0.223·20-s + 0.218·21-s + 1.06·22-s − 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 101478 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 101478 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(101478\)    =    \(2 \cdot 3 \cdot 13 \cdot 1301\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{101478} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 101478,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $7.787765518$
$L(\frac12)$  $\approx$  $7.787765518$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;13,\;1301\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;13,\;1301\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
13 \( 1 - T \)
1301 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 9 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 13 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.93565591813212, −13.35660491371564, −12.84020312274945, −12.07458150077273, −11.82150625612757, −11.62939075381474, −10.98325180808817, −10.15776493100237, −9.878291137912272, −9.251745684531150, −8.815883696011711, −8.039155207685226, −7.689514325713134, −7.391893314310359, −6.536510543683336, −6.109312328691813, −5.647661108340382, −4.828643943492185, −4.320678538423420, −3.869064529909563, −3.358908373987246, −2.838070548193712, −2.006749340282803, −1.311914208337447, −0.8259169905679432, 0.8259169905679432, 1.311914208337447, 2.006749340282803, 2.838070548193712, 3.358908373987246, 3.869064529909563, 4.320678538423420, 4.828643943492185, 5.647661108340382, 6.109312328691813, 6.536510543683336, 7.391893314310359, 7.689514325713134, 8.039155207685226, 8.815883696011711, 9.251745684531150, 9.878291137912272, 10.15776493100237, 10.98325180808817, 11.62939075381474, 11.82150625612757, 12.07458150077273, 12.84020312274945, 13.35660491371564, 13.93565591813212

Graph of the $Z$-function along the critical line