Properties

Label 4-586971-1.1-c1e2-0-2
Degree $4$
Conductor $586971$
Sign $1$
Analytic cond. $37.4257$
Root an. cond. $2.47339$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 4·7-s + 9-s + 11-s − 4·13-s + 5·16-s − 4·17-s + 16·23-s − 6·25-s − 12·28-s − 3·36-s + 12·37-s − 4·41-s − 3·44-s + 9·49-s + 12·52-s + 12·53-s + 12·61-s + 4·63-s − 3·64-s − 8·67-s + 12·68-s − 28·73-s + 4·77-s + 81-s + 24·83-s − 16·91-s + ⋯
L(s)  = 1  − 3/2·4-s + 1.51·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 5/4·16-s − 0.970·17-s + 3.33·23-s − 6/5·25-s − 2.26·28-s − 1/2·36-s + 1.97·37-s − 0.624·41-s − 0.452·44-s + 9/7·49-s + 1.66·52-s + 1.64·53-s + 1.53·61-s + 0.503·63-s − 3/8·64-s − 0.977·67-s + 1.45·68-s − 3.27·73-s + 0.455·77-s + 1/9·81-s + 2.63·83-s − 1.67·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 586971 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 586971 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(586971\)    =    \(3^{2} \cdot 7^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(37.4257\)
Root analytic conductor: \(2.47339\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 586971,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.527570785\)
\(L(\frac12)\) \(\approx\) \(1.527570785\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_1$ \( 1 - T \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.531873237522726526505413455732, −8.043417754758535768136118776530, −7.46995816184461358823952634116, −7.31103020203263189425402107355, −6.71652556533930069422905184403, −6.04932738318847964870511015427, −5.31622482563829752699303340190, −5.02537178440228828164867168057, −4.77341020360027395263930340160, −4.20407903283329927801590362766, −3.93732541302619978826668278831, −2.93557978905532134039103857802, −2.36973748987461167722551114069, −1.45696786533809376503021932873, −0.70456507897479299951997735456, 0.70456507897479299951997735456, 1.45696786533809376503021932873, 2.36973748987461167722551114069, 2.93557978905532134039103857802, 3.93732541302619978826668278831, 4.20407903283329927801590362766, 4.77341020360027395263930340160, 5.02537178440228828164867168057, 5.31622482563829752699303340190, 6.04932738318847964870511015427, 6.71652556533930069422905184403, 7.31103020203263189425402107355, 7.46995816184461358823952634116, 8.043417754758535768136118776530, 8.531873237522726526505413455732

Graph of the $Z$-function along the critical line