Properties

Label 4-100793-1.1-c1e2-0-2
Degree $4$
Conductor $100793$
Sign $-1$
Analytic cond. $6.42664$
Root an. cond. $1.59219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 4·11-s − 6·13-s − 4·16-s − 5·17-s + 6·19-s − 4·23-s + 25-s + 12·37-s − 12·41-s − 7·49-s − 4·53-s − 12·61-s + 10·67-s − 8·71-s − 6·73-s − 12·83-s − 12·99-s − 6·101-s − 20·113-s + 18·117-s + 5·121-s + 127-s + 131-s + 137-s + 139-s − 24·143-s + ⋯
L(s)  = 1  − 9-s + 1.20·11-s − 1.66·13-s − 16-s − 1.21·17-s + 1.37·19-s − 0.834·23-s + 1/5·25-s + 1.97·37-s − 1.87·41-s − 49-s − 0.549·53-s − 1.53·61-s + 1.22·67-s − 0.949·71-s − 0.702·73-s − 1.31·83-s − 1.20·99-s − 0.597·101-s − 1.88·113-s + 1.66·117-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.00·143-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100793 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100793 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(100793\)    =    \(7^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(6.42664\)
Root analytic conductor: \(1.59219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 100793,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 6 T + p T^{2} ) \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 65 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.338454283531721201393266967225, −8.974044271352804509584049573607, −8.323251111737686294752321749541, −7.909876394959228313322877501788, −7.19158236917613228360900327390, −6.86523467170533718035548845884, −6.29726549353495472853486588355, −5.78370835039020955277033303146, −5.00896666513353621837480702638, −4.61543466662304898150771612711, −4.01944433862736986018637679779, −3.06440983181705312700028765882, −2.58019999941638056307726197773, −1.67093919381020811892559199023, 0, 1.67093919381020811892559199023, 2.58019999941638056307726197773, 3.06440983181705312700028765882, 4.01944433862736986018637679779, 4.61543466662304898150771612711, 5.00896666513353621837480702638, 5.78370835039020955277033303146, 6.29726549353495472853486588355, 6.86523467170533718035548845884, 7.19158236917613228360900327390, 7.909876394959228313322877501788, 8.323251111737686294752321749541, 8.974044271352804509584049573607, 9.338454283531721201393266967225

Graph of the $Z$-function along the critical line