Properties

Label 4-76e3-1.1-c1e2-0-8
Degree $4$
Conductor $438976$
Sign $-1$
Analytic cond. $27.9894$
Root an. cond. $2.30011$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 2·5-s + 6·9-s − 8·15-s − 6·17-s − 19-s − 7·25-s − 4·27-s + 8·31-s − 12·45-s − 5·49-s − 24·51-s − 4·57-s + 12·59-s − 26·61-s − 24·67-s + 4·71-s + 18·73-s − 28·75-s + 16·79-s − 37·81-s + 12·85-s + 32·93-s + 2·95-s − 20·101-s − 12·103-s + 4·107-s + ⋯
L(s)  = 1  + 2.30·3-s − 0.894·5-s + 2·9-s − 2.06·15-s − 1.45·17-s − 0.229·19-s − 7/5·25-s − 0.769·27-s + 1.43·31-s − 1.78·45-s − 5/7·49-s − 3.36·51-s − 0.529·57-s + 1.56·59-s − 3.32·61-s − 2.93·67-s + 0.474·71-s + 2.10·73-s − 3.23·75-s + 1.80·79-s − 4.11·81-s + 1.30·85-s + 3.31·93-s + 0.205·95-s − 1.99·101-s − 1.18·103-s + 0.386·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 438976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 438976 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(438976\)    =    \(2^{6} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(27.9894\)
Root analytic conductor: \(2.30011\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 438976,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.392913880587579377462610956197, −7.980897390997220348818758273856, −7.62429229152375892340957919668, −7.43417964682464018577755229644, −6.44323514092267885981017350010, −6.36338832124191520338637131501, −5.50807847957788517516783104842, −4.74929106277827912586938097301, −4.15537276955970084853193543262, −3.93336710501963899561206806573, −3.26219872013992782989814019344, −2.82511261070703297705797963037, −2.27913891249710641141411097526, −1.70231193814897185426764814465, 0, 1.70231193814897185426764814465, 2.27913891249710641141411097526, 2.82511261070703297705797963037, 3.26219872013992782989814019344, 3.93336710501963899561206806573, 4.15537276955970084853193543262, 4.74929106277827912586938097301, 5.50807847957788517516783104842, 6.36338832124191520338637131501, 6.44323514092267885981017350010, 7.43417964682464018577755229644, 7.62429229152375892340957919668, 7.980897390997220348818758273856, 8.392913880587579377462610956197

Graph of the $Z$-function along the critical line