Properties

Label 4-28800-1.1-c1e2-0-13
Degree $4$
Conductor $28800$
Sign $-1$
Analytic cond. $1.83631$
Root an. cond. $1.16409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·9-s − 12·17-s − 25-s + 6·45-s + 2·49-s − 4·53-s − 4·61-s + 9·81-s + 24·85-s − 36·109-s + 20·113-s − 6·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 36·153-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 0.894·5-s − 9-s − 2.91·17-s − 1/5·25-s + 0.894·45-s + 2/7·49-s − 0.549·53-s − 0.512·61-s + 81-s + 2.60·85-s − 3.44·109-s + 1.88·113-s − 0.545·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.91·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28800\)    =    \(2^{7} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1.83631\)
Root analytic conductor: \(1.16409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 28800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53995452629750967103401316721, −9.608299766280126975855394488802, −9.142636833970628524867464007119, −8.644090993847957059926380393022, −8.267597931365864952865943379487, −7.65157613026959321960801147483, −6.96835235274808240707957189423, −6.48376409588633900918233408185, −5.89468762348954186875394751855, −5.03536783179884139766136252243, −4.41332474959862095824986200867, −3.85987682362401468566353919675, −2.90798446575856723060613180384, −2.11379293035072599655137378074, 0, 2.11379293035072599655137378074, 2.90798446575856723060613180384, 3.85987682362401468566353919675, 4.41332474959862095824986200867, 5.03536783179884139766136252243, 5.89468762348954186875394751855, 6.48376409588633900918233408185, 6.96835235274808240707957189423, 7.65157613026959321960801147483, 8.267597931365864952865943379487, 8.644090993847957059926380393022, 9.142636833970628524867464007119, 9.608299766280126975855394488802, 10.53995452629750967103401316721

Graph of the $Z$-function along the critical line