L(s) = 1 | + 3-s − 2·5-s + 9-s − 8·11-s − 2·15-s + 4·17-s − 25-s + 27-s − 8·33-s − 8·43-s − 2·45-s − 14·49-s + 4·51-s − 4·53-s + 16·55-s − 8·59-s − 4·61-s + 8·67-s − 16·71-s − 75-s + 81-s − 8·85-s − 8·99-s − 32·103-s − 4·109-s + 36·113-s + 26·121-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.894·5-s + 1/3·9-s − 2.41·11-s − 0.516·15-s + 0.970·17-s − 1/5·25-s + 0.192·27-s − 1.39·33-s − 1.21·43-s − 0.298·45-s − 2·49-s + 0.560·51-s − 0.549·53-s + 2.15·55-s − 1.04·59-s − 0.512·61-s + 0.977·67-s − 1.89·71-s − 0.115·75-s + 1/9·81-s − 0.867·85-s − 0.804·99-s − 3.15·103-s − 0.383·109-s + 3.38·113-s + 2.36·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$ | \( 1 - T \) |
| 5 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
good | 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.656797755147918818405236990829, −8.730633394111998328725718228031, −8.173282349834764667604075089133, −8.095549656698690551636863836910, −7.47308398754126662115910632702, −7.26958585488936859387169650645, −6.33548194788761977078999997603, −5.74245729062321480161908713186, −5.01357758335939619070346679818, −4.76184067616314722575220108003, −3.84771560491769769437106298900, −3.14826068230388029805668446658, −2.79864903411763483594224581992, −1.72979115909686153918413689995, 0,
1.72979115909686153918413689995, 2.79864903411763483594224581992, 3.14826068230388029805668446658, 3.84771560491769769437106298900, 4.76184067616314722575220108003, 5.01357758335939619070346679818, 5.74245729062321480161908713186, 6.33548194788761977078999997603, 7.26958585488936859387169650645, 7.47308398754126662115910632702, 8.095549656698690551636863836910, 8.173282349834764667604075089133, 8.730633394111998328725718228031, 9.656797755147918818405236990829