Dirichlet series
L(s) = 1 | + 2-s + 4-s − 4·5-s − 7-s + 8-s + 9-s − 4·10-s − 8·11-s + 12·13-s − 14-s + 16-s + 18-s − 4·20-s − 8·22-s + 2·25-s + 12·26-s − 28-s + 32-s + 4·35-s + 36-s − 4·40-s − 8·43-s − 8·44-s − 4·45-s + 49-s + 2·50-s + 12·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 1.26·10-s − 2.41·11-s + 3.32·13-s − 0.267·14-s + 1/4·16-s + 0.235·18-s − 0.894·20-s − 1.70·22-s + 2/5·25-s + 2.35·26-s − 0.188·28-s + 0.176·32-s + 0.676·35-s + 1/6·36-s − 0.632·40-s − 1.21·43-s − 1.20·44-s − 0.596·45-s + 1/7·49-s + 0.282·50-s + 1.66·52-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(395136\) = \(2^{7} \cdot 3^{2} \cdot 7^{3}\) |
Sign: | $1$ |
Motivic weight: | \(1\) |
Character: | $\chi_{395136} (1, \cdot )$ |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 395136,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
\(L(1)\) | \(\approx\) | \(1.614088862\) |
\(L(\frac12)\) | \(\approx\) | \(1.614088862\) |
\(L(\frac{3}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( 1 - T \) |
3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) | |
7 | $C_1$ | \( 1 + T \) | |
good | 5 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
11 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | |
13 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) | |
17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | |
19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | |
23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | |
29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | |
31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | |
41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
43 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | |
47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | |
61 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) | |
67 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | |
71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | |
73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | |
79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | |
89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−8.356918966632091922574869118017, −8.133889765903900854060733905242, −7.907802501954179251622576832429, −7.28965766970175880058840390576, −6.84552480602986516155667793601, −6.23175022246340560839371166306, −5.81340647648643732482215027480, −5.33985014787602837985094112170, −4.73982413848000625426104276677, −4.09458451974208041146506029777, −3.62482887081886485478101246558, −3.47205407811273829747507807541, −2.74481126065377142074711550653, −1.79260226536651551834145289140, −0.62964118914525720642781422582, 0.62964118914525720642781422582, 1.79260226536651551834145289140, 2.74481126065377142074711550653, 3.47205407811273829747507807541, 3.62482887081886485478101246558, 4.09458451974208041146506029777, 4.73982413848000625426104276677, 5.33985014787602837985094112170, 5.81340647648643732482215027480, 6.23175022246340560839371166306, 6.84552480602986516155667793601, 7.28965766970175880058840390576, 7.907802501954179251622576832429, 8.133889765903900854060733905242, 8.356918966632091922574869118017