Properties

Label 4-139392-1.1-c1e2-0-26
Degree $4$
Conductor $139392$
Sign $-1$
Analytic cond. $8.88775$
Root an. cond. $1.72662$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s + 4·11-s − 8·19-s + 2·25-s + 12·37-s + 8·43-s − 4·45-s − 14·49-s − 4·53-s − 16·55-s − 16·79-s + 81-s − 8·83-s − 12·89-s + 32·95-s + 4·97-s + 4·99-s − 24·107-s + 36·113-s + 5·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 1.78·5-s + 1/3·9-s + 1.20·11-s − 1.83·19-s + 2/5·25-s + 1.97·37-s + 1.21·43-s − 0.596·45-s − 2·49-s − 0.549·53-s − 2.15·55-s − 1.80·79-s + 1/9·81-s − 0.878·83-s − 1.27·89-s + 3.28·95-s + 0.406·97-s + 0.402·99-s − 2.32·107-s + 3.38·113-s + 5/11·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139392 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139392 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(139392\)    =    \(2^{7} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(8.88775\)
Root analytic conductor: \(1.72662\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 139392,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.978862728030986918492028680452, −8.541652558871803274196386006614, −8.098990694093691505068092710868, −7.63618059284105349520809602510, −7.32438284862293693328503541547, −6.42897107072744719896577758454, −6.42508206754472676439323141059, −5.62755823403878952826962811199, −4.60156021497859087443489366122, −4.25303028692796488061253338187, −4.01628213317951587527532774984, −3.32790226181780202269440904381, −2.43505247067401554863084291555, −1.37409591703931866594987960910, 0, 1.37409591703931866594987960910, 2.43505247067401554863084291555, 3.32790226181780202269440904381, 4.01628213317951587527532774984, 4.25303028692796488061253338187, 4.60156021497859087443489366122, 5.62755823403878952826962811199, 6.42508206754472676439323141059, 6.42897107072744719896577758454, 7.32438284862293693328503541547, 7.63618059284105349520809602510, 8.098990694093691505068092710868, 8.541652558871803274196386006614, 8.978862728030986918492028680452

Graph of the $Z$-function along the critical line