Properties

Label 4-387200-1.1-c1e2-0-17
Degree $4$
Conductor $387200$
Sign $-1$
Analytic cond. $24.6882$
Root an. cond. $2.22906$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 2·9-s − 8·19-s + 3·25-s − 8·35-s − 4·37-s − 4·43-s + 4·45-s + 2·49-s + 12·53-s − 8·63-s − 5·81-s + 12·83-s + 4·89-s − 16·95-s − 12·97-s + 4·107-s − 28·113-s − 11·121-s + 4·125-s + 127-s + 131-s + 32·133-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 2/3·9-s − 1.83·19-s + 3/5·25-s − 1.35·35-s − 0.657·37-s − 0.609·43-s + 0.596·45-s + 2/7·49-s + 1.64·53-s − 1.00·63-s − 5/9·81-s + 1.31·83-s + 0.423·89-s − 1.64·95-s − 1.21·97-s + 0.386·107-s − 2.63·113-s − 121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 387200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 387200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(387200\)    =    \(2^{7} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(24.6882\)
Root analytic conductor: \(2.22906\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 387200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.614877366899767727212383683117, −8.020415365534980254960565516850, −7.42693142251341660894704744947, −6.73881553733037199099744681910, −6.65404010239088519836552140832, −6.26115860963273546153702682988, −5.67013069192851162699685276621, −5.17812631100724129492622947089, −4.52300468555237540728845461628, −3.92342525820680135983012290432, −3.48792670261330650874399245093, −2.66976939063195263823717000562, −2.21421865837896487879653154980, −1.35904199802600644391707963791, 0, 1.35904199802600644391707963791, 2.21421865837896487879653154980, 2.66976939063195263823717000562, 3.48792670261330650874399245093, 3.92342525820680135983012290432, 4.52300468555237540728845461628, 5.17812631100724129492622947089, 5.67013069192851162699685276621, 6.26115860963273546153702682988, 6.65404010239088519836552140832, 6.73881553733037199099744681910, 7.42693142251341660894704744947, 8.020415365534980254960565516850, 8.614877366899767727212383683117

Graph of the $Z$-function along the critical line