Properties

Label 4-696e2-1.1-c1e2-0-2
Degree $4$
Conductor $484416$
Sign $1$
Analytic cond. $30.8867$
Root an. cond. $2.35745$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s − 4·13-s − 16·23-s + 2·25-s + 6·29-s − 4·45-s − 14·49-s − 4·53-s + 8·59-s + 16·65-s − 8·67-s + 16·71-s + 81-s − 8·83-s + 32·103-s − 24·107-s − 4·109-s + 64·115-s − 4·117-s − 6·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + ⋯
L(s)  = 1  − 1.78·5-s + 1/3·9-s − 1.10·13-s − 3.33·23-s + 2/5·25-s + 1.11·29-s − 0.596·45-s − 2·49-s − 0.549·53-s + 1.04·59-s + 1.98·65-s − 0.977·67-s + 1.89·71-s + 1/9·81-s − 0.878·83-s + 3.15·103-s − 2.32·107-s − 0.383·109-s + 5.96·115-s − 0.369·117-s − 0.545·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.99·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 484416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 484416 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(484416\)    =    \(2^{6} \cdot 3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(30.8867\)
Root analytic conductor: \(2.35745\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 484416,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4317936316\)
\(L(\frac12)\) \(\approx\) \(0.4317936316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
29$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.169834685173383924757119979209, −8.098990694093691505068092710868, −7.71721200903054213816393191968, −7.42501431214799645944696043073, −6.64608831177428132224128205181, −6.42897107072744719896577758454, −5.74261611440312941575828325994, −5.15764774786080872178121149571, −4.46164747667887486388909533877, −4.25303028692796488061253338187, −3.74922469853547417385089284767, −3.23320358630252677719161660912, −2.37294675688448229559246749927, −1.75758602678204178340122440060, −0.33671766043668980558621258503, 0.33671766043668980558621258503, 1.75758602678204178340122440060, 2.37294675688448229559246749927, 3.23320358630252677719161660912, 3.74922469853547417385089284767, 4.25303028692796488061253338187, 4.46164747667887486388909533877, 5.15764774786080872178121149571, 5.74261611440312941575828325994, 6.42897107072744719896577758454, 6.64608831177428132224128205181, 7.42501431214799645944696043073, 7.71721200903054213816393191968, 8.098990694093691505068092710868, 8.169834685173383924757119979209

Graph of the $Z$-function along the critical line