Properties

Label 4-203e2-1.1-c1e2-0-5
Degree $4$
Conductor $41209$
Sign $-1$
Analytic cond. $2.62752$
Root an. cond. $1.27317$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·7-s + 4·9-s − 10·13-s − 3·16-s − 2·23-s − 6·25-s + 2·28-s − 4·29-s − 4·36-s − 3·49-s + 10·52-s + 12·53-s − 10·59-s − 8·63-s + 7·64-s + 14·67-s + 7·81-s − 20·83-s + 20·91-s + 2·92-s + 6·100-s + 10·103-s − 4·107-s + 6·112-s + 4·116-s − 40·117-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.755·7-s + 4/3·9-s − 2.77·13-s − 3/4·16-s − 0.417·23-s − 6/5·25-s + 0.377·28-s − 0.742·29-s − 2/3·36-s − 3/7·49-s + 1.38·52-s + 1.64·53-s − 1.30·59-s − 1.00·63-s + 7/8·64-s + 1.71·67-s + 7/9·81-s − 2.19·83-s + 2.09·91-s + 0.208·92-s + 3/5·100-s + 0.985·103-s − 0.386·107-s + 0.566·112-s + 0.371·116-s − 3.69·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41209 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41209 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41209\)    =    \(7^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(2.62752\)
Root analytic conductor: \(1.27317\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 41209,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + 2 T + p T^{2} \)
29$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 154 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.918103161223520397240654911344, −9.591238369246225749386482983285, −9.264853869188346104598010404109, −8.457197649962642253202077729058, −7.71240730416121449694136528785, −7.29155980463525000217122731746, −6.99392722222509128357175708398, −6.29458680310399886991101574008, −5.44779861172707230627218230153, −4.89946183719736252315133316436, −4.31367579764196367679844488173, −3.79916005521179829561097206512, −2.66866588116939972345119402788, −1.97638088946853147917783291957, 0, 1.97638088946853147917783291957, 2.66866588116939972345119402788, 3.79916005521179829561097206512, 4.31367579764196367679844488173, 4.89946183719736252315133316436, 5.44779861172707230627218230153, 6.29458680310399886991101574008, 6.99392722222509128357175708398, 7.29155980463525000217122731746, 7.71240730416121449694136528785, 8.457197649962642253202077729058, 9.264853869188346104598010404109, 9.591238369246225749386482983285, 9.918103161223520397240654911344

Graph of the $Z$-function along the critical line