Properties

Label 4-580e2-1.1-c1e2-0-5
Degree $4$
Conductor $336400$
Sign $1$
Analytic cond. $21.4491$
Root an. cond. $2.15205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 2·9-s + 4·13-s + 12·23-s + 3·25-s + 6·29-s − 8·35-s + 4·45-s − 2·49-s − 12·53-s + 24·59-s − 8·63-s − 8·65-s + 4·67-s − 24·71-s − 5·81-s + 12·83-s + 16·91-s + 28·103-s − 12·107-s + 4·109-s − 24·115-s − 8·117-s − 22·121-s − 4·125-s + 127-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 2/3·9-s + 1.10·13-s + 2.50·23-s + 3/5·25-s + 1.11·29-s − 1.35·35-s + 0.596·45-s − 2/7·49-s − 1.64·53-s + 3.12·59-s − 1.00·63-s − 0.992·65-s + 0.488·67-s − 2.84·71-s − 5/9·81-s + 1.31·83-s + 1.67·91-s + 2.75·103-s − 1.16·107-s + 0.383·109-s − 2.23·115-s − 0.739·117-s − 2·121-s − 0.357·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(336400\)    =    \(2^{4} \cdot 5^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(21.4491\)
Root analytic conductor: \(2.15205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 336400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.975079124\)
\(L(\frac12)\) \(\approx\) \(1.975079124\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
29$C_2$ \( 1 - 6 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.552217550781204179646223792184, −8.483197285337311476714919929487, −7.84776053423609074264626236578, −7.54682968289187724168261985660, −6.85164916278026696992828299608, −6.57891116465648258947670054106, −5.83282239676676345421736207728, −5.28343034459676936825398261669, −4.78130792717525308450176413839, −4.54301159938977421825721297318, −3.71708582474438105612348859112, −3.19902910472993221395422173688, −2.62854536549803935810645982732, −1.56433382981290291311865710327, −0.892682357417418065980839508444, 0.892682357417418065980839508444, 1.56433382981290291311865710327, 2.62854536549803935810645982732, 3.19902910472993221395422173688, 3.71708582474438105612348859112, 4.54301159938977421825721297318, 4.78130792717525308450176413839, 5.28343034459676936825398261669, 5.83282239676676345421736207728, 6.57891116465648258947670054106, 6.85164916278026696992828299608, 7.54682968289187724168261985660, 7.84776053423609074264626236578, 8.483197285337311476714919929487, 8.552217550781204179646223792184

Graph of the $Z$-function along the critical line