Properties

Label 4-145e2-1.1-c1e2-0-0
Degree $4$
Conductor $21025$
Sign $1$
Analytic cond. $1.34057$
Root an. cond. $1.07602$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 3·5-s − 9-s − 3·16-s + 3·20-s + 4·25-s + 6·29-s − 36-s − 3·45-s − 10·49-s − 12·59-s − 7·64-s − 9·80-s − 8·81-s + 4·100-s + 10·109-s + 6·116-s + 17·121-s − 3·125-s + 127-s + 131-s + 137-s + 139-s + 3·144-s + 18·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.34·5-s − 1/3·9-s − 3/4·16-s + 0.670·20-s + 4/5·25-s + 1.11·29-s − 1/6·36-s − 0.447·45-s − 1.42·49-s − 1.56·59-s − 7/8·64-s − 1.00·80-s − 8/9·81-s + 2/5·100-s + 0.957·109-s + 0.557·116-s + 1.54·121-s − 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/4·144-s + 1.49·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21025\)    =    \(5^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(1.34057\)
Root analytic conductor: \(1.07602\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.528433200\)
\(L(\frac12)\) \(\approx\) \(1.528433200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 - 3 T + p T^{2} \)
29$C_2$ \( 1 - 6 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 41 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 89 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 113 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82553789347932959955315112147, −10.28353392795342278987908972818, −9.737481940209185346237104800034, −9.339836646165358185420325475545, −8.718569936936276174746017611956, −8.197442728315647154964018015629, −7.41365440531891275049274903808, −6.78489189350551972813060491708, −6.24723087762616691306285278455, −5.86126892323299065677908591135, −5.03027375920784564217785266273, −4.46413883236430091570208500028, −3.23088674870732935194609608941, −2.50994638478549492939056655724, −1.65461411133275513613208801046, 1.65461411133275513613208801046, 2.50994638478549492939056655724, 3.23088674870732935194609608941, 4.46413883236430091570208500028, 5.03027375920784564217785266273, 5.86126892323299065677908591135, 6.24723087762616691306285278455, 6.78489189350551972813060491708, 7.41365440531891275049274903808, 8.197442728315647154964018015629, 8.718569936936276174746017611956, 9.339836646165358185420325475545, 9.737481940209185346237104800034, 10.28353392795342278987908972818, 10.82553789347932959955315112147

Graph of the $Z$-function along the critical line