Properties

Label 4-16820-1.1-c1e2-0-0
Degree $4$
Conductor $16820$
Sign $1$
Analytic cond. $1.07245$
Root an. cond. $1.01764$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 3·7-s − 2·9-s + 5·13-s + 16-s + 2·23-s − 4·25-s − 3·28-s + 3·29-s + 2·36-s + 5·49-s − 5·52-s + 12·53-s + 6·59-s − 6·63-s − 64-s − 19·67-s − 2·71-s − 5·81-s − 7·83-s + 15·91-s − 2·92-s + 4·100-s − 13·103-s + 17·107-s − 16·109-s + 3·112-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.13·7-s − 2/3·9-s + 1.38·13-s + 1/4·16-s + 0.417·23-s − 4/5·25-s − 0.566·28-s + 0.557·29-s + 1/3·36-s + 5/7·49-s − 0.693·52-s + 1.64·53-s + 0.781·59-s − 0.755·63-s − 1/8·64-s − 2.32·67-s − 0.237·71-s − 5/9·81-s − 0.768·83-s + 1.57·91-s − 0.208·92-s + 2/5·100-s − 1.28·103-s + 1.64·107-s − 1.53·109-s + 0.283·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16820 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16820 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16820\)    =    \(2^{2} \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(1.07245\)
Root analytic conductor: \(1.01764\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 16820,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.113220165\)
\(L(\frac12)\) \(\approx\) \(1.113220165\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - T + p T^{2} ) \)
29$C_2$ \( 1 - 3 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 7 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 48 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10095789490431463214003897592, −10.49128616852238001284277984628, −10.09750511866670223720955260059, −9.167263130908966263557714337576, −8.779448746338751367140700661297, −8.370064452758151162057447005505, −7.84633911458726698508718324403, −7.18123333603327178916566455468, −6.31083125169409972137627220056, −5.70994626755523664832649392309, −5.18460319739737837111699606789, −4.34582199427559466743138441203, −3.75640671227168289341490186247, −2.70027648215823123322990139492, −1.38957076416327272839190174600, 1.38957076416327272839190174600, 2.70027648215823123322990139492, 3.75640671227168289341490186247, 4.34582199427559466743138441203, 5.18460319739737837111699606789, 5.70994626755523664832649392309, 6.31083125169409972137627220056, 7.18123333603327178916566455468, 7.84633911458726698508718324403, 8.370064452758151162057447005505, 8.779448746338751367140700661297, 9.167263130908966263557714337576, 10.09750511866670223720955260059, 10.49128616852238001284277984628, 11.10095789490431463214003897592

Graph of the $Z$-function along the critical line