Properties

Label 4-672e2-1.1-c1e2-0-11
Degree $4$
Conductor $451584$
Sign $1$
Analytic cond. $28.7933$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·7-s + 3·9-s − 8·19-s − 8·21-s − 6·25-s + 4·27-s + 4·29-s + 8·31-s − 4·37-s + 16·47-s + 9·49-s + 20·53-s − 16·57-s − 8·59-s − 12·63-s − 12·75-s + 5·81-s + 24·83-s + 8·87-s + 16·93-s − 24·103-s + 28·109-s − 8·111-s + 4·113-s − 6·121-s + 127-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.51·7-s + 9-s − 1.83·19-s − 1.74·21-s − 6/5·25-s + 0.769·27-s + 0.742·29-s + 1.43·31-s − 0.657·37-s + 2.33·47-s + 9/7·49-s + 2.74·53-s − 2.11·57-s − 1.04·59-s − 1.51·63-s − 1.38·75-s + 5/9·81-s + 2.63·83-s + 0.857·87-s + 1.65·93-s − 2.36·103-s + 2.68·109-s − 0.759·111-s + 0.376·113-s − 0.545·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(451584\)    =    \(2^{10} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(28.7933\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 451584,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.074609216\)
\(L(\frac12)\) \(\approx\) \(2.074609216\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.743524682466596781725926555582, −8.194996606889196447340137083980, −7.77266654072122543697820690098, −7.08418685931226746330310304373, −6.91469103626909406223255043804, −6.15267013015603292112906972931, −6.11847465912223458443982849872, −5.30972869916546985463135518288, −4.45734868069307623303098179259, −4.10625798014363516984369255368, −3.66065670673094450794263791803, −3.02070160065614261488223955203, −2.44821729992400328434125228202, −2.04703332239703026520690505380, −0.70664651131190107041485094273, 0.70664651131190107041485094273, 2.04703332239703026520690505380, 2.44821729992400328434125228202, 3.02070160065614261488223955203, 3.66065670673094450794263791803, 4.10625798014363516984369255368, 4.45734868069307623303098179259, 5.30972869916546985463135518288, 6.11847465912223458443982849872, 6.15267013015603292112906972931, 6.91469103626909406223255043804, 7.08418685931226746330310304373, 7.77266654072122543697820690098, 8.194996606889196447340137083980, 8.743524682466596781725926555582

Graph of the $Z$-function along the critical line