Properties

Label 4-55296-1.1-c1e2-0-11
Degree $4$
Conductor $55296$
Sign $1$
Analytic cond. $3.52572$
Root an. cond. $1.37028$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s + 4·15-s − 8·19-s + 2·25-s + 27-s + 4·29-s + 8·43-s + 4·45-s + 16·47-s + 2·49-s + 20·53-s − 8·57-s + 8·67-s − 32·71-s − 12·73-s + 2·75-s + 81-s + 4·87-s − 32·95-s − 28·97-s − 12·101-s − 6·121-s − 28·125-s + 127-s + 8·129-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s + 1.03·15-s − 1.83·19-s + 2/5·25-s + 0.192·27-s + 0.742·29-s + 1.21·43-s + 0.596·45-s + 2.33·47-s + 2/7·49-s + 2.74·53-s − 1.05·57-s + 0.977·67-s − 3.79·71-s − 1.40·73-s + 0.230·75-s + 1/9·81-s + 0.428·87-s − 3.28·95-s − 2.84·97-s − 1.19·101-s − 0.545·121-s − 2.50·125-s + 0.0887·127-s + 0.704·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(55296\)    =    \(2^{11} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(3.52572\)
Root analytic conductor: \(1.37028\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 55296,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.240834063\)
\(L(\frac12)\) \(\approx\) \(2.240834063\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08615312505774861350749378685, −9.488699237661810053920246470193, −8.844581178668094717437191348011, −8.839886292016704738441339481672, −8.093022628739907221893201157530, −7.33135946825865482348621844071, −6.91469103626909406223255043804, −6.15267013015603292112906972931, −5.82131382158921014822362291005, −5.37335304530331906156568812203, −4.20875443528614711634884665822, −4.10625798014363516984369255368, −2.59447091927996366543258857368, −2.44821729992400328434125228202, −1.47354540780337201919328149138, 1.47354540780337201919328149138, 2.44821729992400328434125228202, 2.59447091927996366543258857368, 4.10625798014363516984369255368, 4.20875443528614711634884665822, 5.37335304530331906156568812203, 5.82131382158921014822362291005, 6.15267013015603292112906972931, 6.91469103626909406223255043804, 7.33135946825865482348621844071, 8.093022628739907221893201157530, 8.839886292016704738441339481672, 8.844581178668094717437191348011, 9.488699237661810053920246470193, 10.08615312505774861350749378685

Graph of the $Z$-function along the critical line