Properties

Label 4-501120-1.1-c1e2-0-37
Degree $4$
Conductor $501120$
Sign $-1$
Analytic cond. $31.9518$
Root an. cond. $2.37751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 12-s − 15-s + 16-s + 18-s + 2·19-s − 20-s − 12·23-s + 24-s − 2·25-s + 27-s − 9·29-s − 30-s + 32-s + 36-s + 2·38-s − 40-s − 14·43-s − 45-s − 12·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s − 0.258·15-s + 1/4·16-s + 0.235·18-s + 0.458·19-s − 0.223·20-s − 2.50·23-s + 0.204·24-s − 2/5·25-s + 0.192·27-s − 1.67·29-s − 0.182·30-s + 0.176·32-s + 1/6·36-s + 0.324·38-s − 0.158·40-s − 2.13·43-s − 0.149·45-s − 1.76·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(501120\)    =    \(2^{7} \cdot 3^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9518\)
Root analytic conductor: \(2.37751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 501120,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 8 T + p T^{2} ) \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 140 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.098083757421628124373573879351, −7.913560268310654169476753169763, −7.46335730106859617827546934609, −6.89766586930783090179338216340, −6.44445446052109076941360171382, −5.93300642160155301599908297373, −5.47603056992212544648417436087, −4.92612974030375496961565795530, −4.30433285935080989623916938766, −3.88521559668010627685014100686, −3.43789265988245814699791501212, −2.93214368957060441967765204439, −1.94710384280292418352532319524, −1.71337707343189320894220678994, 0, 1.71337707343189320894220678994, 1.94710384280292418352532319524, 2.93214368957060441967765204439, 3.43789265988245814699791501212, 3.88521559668010627685014100686, 4.30433285935080989623916938766, 4.92612974030375496961565795530, 5.47603056992212544648417436087, 5.93300642160155301599908297373, 6.44445446052109076941360171382, 6.89766586930783090179338216340, 7.46335730106859617827546934609, 7.913560268310654169476753169763, 8.098083757421628124373573879351

Graph of the $Z$-function along the critical line