Properties

Label 4-338688-1.1-c1e2-0-54
Degree $4$
Conductor $338688$
Sign $-1$
Analytic cond. $21.5950$
Root an. cond. $2.15570$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 9-s − 4·15-s + 4·17-s + 2·25-s + 27-s + 12·37-s − 12·41-s − 8·43-s − 4·45-s − 7·49-s + 4·51-s − 8·59-s + 8·67-s + 2·75-s + 16·79-s + 81-s + 8·83-s − 16·85-s − 12·89-s − 36·101-s − 4·109-s + 12·111-s − 6·121-s − 12·123-s + 28·125-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1/3·9-s − 1.03·15-s + 0.970·17-s + 2/5·25-s + 0.192·27-s + 1.97·37-s − 1.87·41-s − 1.21·43-s − 0.596·45-s − 49-s + 0.560·51-s − 1.04·59-s + 0.977·67-s + 0.230·75-s + 1.80·79-s + 1/9·81-s + 0.878·83-s − 1.73·85-s − 1.27·89-s − 3.58·101-s − 0.383·109-s + 1.13·111-s − 0.545·121-s − 1.08·123-s + 2.50·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(338688\)    =    \(2^{8} \cdot 3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(21.5950\)
Root analytic conductor: \(2.15570\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 338688,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
7$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.173282349834764667604075089133, −8.131315776481593009713606089546, −7.82263580546813636934054242173, −7.26958585488936859387169650645, −6.78395093605661555810316280628, −6.30966811163732211212778691110, −5.58667709375314371155679753614, −5.01357758335939619070346679818, −4.44811958782670156328485077225, −3.97597569667552498946447381576, −3.42103471864385914094720232253, −3.14826068230388029805668446658, −2.20947719434785265756306128762, −1.24950065754749508798543005172, 0, 1.24950065754749508798543005172, 2.20947719434785265756306128762, 3.14826068230388029805668446658, 3.42103471864385914094720232253, 3.97597569667552498946447381576, 4.44811958782670156328485077225, 5.01357758335939619070346679818, 5.58667709375314371155679753614, 6.30966811163732211212778691110, 6.78395093605661555810316280628, 7.26958585488936859387169650645, 7.82263580546813636934054242173, 8.131315776481593009713606089546, 8.173282349834764667604075089133

Graph of the $Z$-function along the critical line