Properties

Label 4-160083-1.1-c1e2-0-5
Degree $4$
Conductor $160083$
Sign $1$
Analytic cond. $10.2070$
Root an. cond. $1.78741$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·4-s + 4·5-s + 4·7-s + 9-s − 3·12-s + 4·15-s + 5·16-s + 4·17-s − 12·20-s + 4·21-s + 2·25-s + 27-s − 12·28-s + 16·35-s − 3·36-s + 12·37-s + 4·41-s + 4·45-s − 16·47-s + 5·48-s + 9·49-s + 4·51-s + 8·59-s − 12·60-s + 4·63-s − 3·64-s + ⋯
L(s)  = 1  + 0.577·3-s − 3/2·4-s + 1.78·5-s + 1.51·7-s + 1/3·9-s − 0.866·12-s + 1.03·15-s + 5/4·16-s + 0.970·17-s − 2.68·20-s + 0.872·21-s + 2/5·25-s + 0.192·27-s − 2.26·28-s + 2.70·35-s − 1/2·36-s + 1.97·37-s + 0.624·41-s + 0.596·45-s − 2.33·47-s + 0.721·48-s + 9/7·49-s + 0.560·51-s + 1.04·59-s − 1.54·60-s + 0.503·63-s − 3/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160083 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160083 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160083\)    =    \(3^{3} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(10.2070\)
Root analytic conductor: \(1.78741\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160083,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.465757066\)
\(L(\frac12)\) \(\approx\) \(2.465757066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.430206051937599176170301208447, −8.732088684533910814314758308014, −8.389268452519734683124359977272, −7.933480025037517782290916340443, −7.60731726518247812897599595849, −6.78773519865467313405876423609, −5.99045197964575513149352902495, −5.64913594526162848677189952595, −5.25930136350710548023686434400, −4.52395871965258729630923756023, −4.35338404351630392777693329438, −3.44264814031822825656923586814, −2.58943983398263715091283271039, −1.82001999803537272093437549398, −1.20030448276572071441538926359, 1.20030448276572071441538926359, 1.82001999803537272093437549398, 2.58943983398263715091283271039, 3.44264814031822825656923586814, 4.35338404351630392777693329438, 4.52395871965258729630923756023, 5.25930136350710548023686434400, 5.64913594526162848677189952595, 5.99045197964575513149352902495, 6.78773519865467313405876423609, 7.60731726518247812897599595849, 7.933480025037517782290916340443, 8.389268452519734683124359977272, 8.732088684533910814314758308014, 9.430206051937599176170301208447

Graph of the $Z$-function along the critical line