Properties

Label 4-926100-1.1-c1e2-0-28
Degree $4$
Conductor $926100$
Sign $1$
Analytic cond. $59.0489$
Root an. cond. $2.77206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 2·5-s − 7-s + 9-s + 12-s + 2·15-s + 16-s + 4·17-s + 2·20-s − 21-s + 3·25-s + 27-s − 28-s − 2·35-s + 36-s + 12·37-s − 12·41-s − 8·43-s + 2·45-s + 48-s + 49-s + 4·51-s + 24·59-s + 2·60-s − 63-s + 64-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.377·7-s + 1/3·9-s + 0.288·12-s + 0.516·15-s + 1/4·16-s + 0.970·17-s + 0.447·20-s − 0.218·21-s + 3/5·25-s + 0.192·27-s − 0.188·28-s − 0.338·35-s + 1/6·36-s + 1.97·37-s − 1.87·41-s − 1.21·43-s + 0.298·45-s + 0.144·48-s + 1/7·49-s + 0.560·51-s + 3.12·59-s + 0.258·60-s − 0.125·63-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 926100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 926100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(926100\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(59.0489\)
Root analytic conductor: \(2.77206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 926100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.674923837\)
\(L(\frac12)\) \(\approx\) \(3.674923837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
5$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( 1 + T \)
good11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.185634457079877915713969006222, −7.68131261207395042033915827358, −7.31970008287706573052341981271, −6.81537318886956844914397666067, −6.40973998919568114415810052240, −5.97975998469911468351052676550, −5.59102503422980904290428466069, −4.95725936124254114017607791343, −4.62242475448465894529250370260, −3.67516322565973252877181398017, −3.44893990823261081236809071688, −2.79601598717148031870127332799, −2.27051973415844153304852765225, −1.69559251292467624738091785885, −0.897247117961030373363801846777, 0.897247117961030373363801846777, 1.69559251292467624738091785885, 2.27051973415844153304852765225, 2.79601598717148031870127332799, 3.44893990823261081236809071688, 3.67516322565973252877181398017, 4.62242475448465894529250370260, 4.95725936124254114017607791343, 5.59102503422980904290428466069, 5.97975998469911468351052676550, 6.40973998919568114415810052240, 6.81537318886956844914397666067, 7.31970008287706573052341981271, 7.68131261207395042033915827358, 8.185634457079877915713969006222

Graph of the $Z$-function along the critical line