Properties

Label 4-84e3-1.1-c1e2-0-8
Degree $4$
Conductor $592704$
Sign $1$
Analytic cond. $37.7913$
Root an. cond. $2.47940$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 7-s + 9-s + 4·15-s + 12·17-s − 21-s + 2·25-s + 27-s − 4·35-s − 20·37-s − 20·41-s + 24·43-s + 4·45-s − 16·47-s + 49-s + 12·51-s + 8·59-s − 63-s + 24·67-s + 2·75-s + 16·79-s + 81-s + 8·83-s + 48·85-s + 12·89-s + 20·101-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s + 1.03·15-s + 2.91·17-s − 0.218·21-s + 2/5·25-s + 0.192·27-s − 0.676·35-s − 3.28·37-s − 3.12·41-s + 3.65·43-s + 0.596·45-s − 2.33·47-s + 1/7·49-s + 1.68·51-s + 1.04·59-s − 0.125·63-s + 2.93·67-s + 0.230·75-s + 1.80·79-s + 1/9·81-s + 0.878·83-s + 5.20·85-s + 1.27·89-s + 1.99·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 592704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(592704\)    =    \(2^{6} \cdot 3^{3} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(37.7913\)
Root analytic conductor: \(2.47940\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 592704,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.676818641\)
\(L(\frac12)\) \(\approx\) \(3.676818641\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
7$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.577574048820412073979821096434, −7.86004275519657164377594722946, −7.65994621019403063529610936786, −7.05267897803070418923661148552, −6.42136658293515809263418102895, −6.27830454481138490924310987858, −5.47919414246685677243404259713, −5.25019213638990204722565722077, −5.06048784569425782183212035239, −3.72769041359201298820498364558, −3.56921408081238054859871707771, −3.08157339545259112628074418683, −2.06515692945354055956624655608, −1.91473513602758200866610556345, −1.00371826659586316798708144945, 1.00371826659586316798708144945, 1.91473513602758200866610556345, 2.06515692945354055956624655608, 3.08157339545259112628074418683, 3.56921408081238054859871707771, 3.72769041359201298820498364558, 5.06048784569425782183212035239, 5.25019213638990204722565722077, 5.47919414246685677243404259713, 6.27830454481138490924310987858, 6.42136658293515809263418102895, 7.05267897803070418923661148552, 7.65994621019403063529610936786, 7.86004275519657164377594722946, 8.577574048820412073979821096434

Graph of the $Z$-function along the critical line