Properties

 Degree 4 Conductor $2^{6} \cdot 3^{2} \cdot 17^{2}$ Sign $-1$ Motivic weight 1 Primitive yes Self-dual yes Analytic rank 1

Origins

Dirichlet series

 L(s)  = 1 + 2-s − 4-s − 3·8-s + 9-s − 16-s − 2·17-s + 18-s − 10·25-s + 5·32-s − 2·34-s − 36-s − 16·47-s − 2·49-s − 10·50-s + 7·64-s + 2·68-s − 3·72-s + 81-s − 20·89-s − 16·94-s − 2·98-s + 10·100-s − 6·121-s + 127-s − 3·128-s + 131-s + 6·136-s + ⋯
 L(s)  = 1 + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1/3·9-s − 1/4·16-s − 0.485·17-s + 0.235·18-s − 2·25-s + 0.883·32-s − 0.342·34-s − 1/6·36-s − 2.33·47-s − 2/7·49-s − 1.41·50-s + 7/8·64-s + 0.242·68-s − 0.353·72-s + 1/9·81-s − 2.11·89-s − 1.65·94-s − 0.202·98-s + 100-s − 0.545·121-s + 0.0887·127-s − 0.265·128-s + 0.0873·131-s + 0.514·136-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

 $$d$$ = $$4$$ $$N$$ = $$166464$$    =    $$2^{6} \cdot 3^{2} \cdot 17^{2}$$ $$\varepsilon$$ = $-1$ motivic weight = $$1$$ character : $\chi_{166464} (1, \cdot )$ Sato-Tate : $\mathrm{SU}(2)$ primitive : yes self-dual : yes analytic rank = 1 Selberg data = $(4,\ 166464,\ (\ :1/2, 1/2),\ -1)$ $L(1)$ $=$ $0$ $L(\frac12)$ $=$ $0$ $L(\frac{3}{2})$ not available $L(1)$ not available

Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3,\;17\}$,$F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4$with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;17\}$, then $F_p(T)$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ $$1 - T + p T^{2}$$
3$C_1$$\times$$C_1$ $$( 1 - T )( 1 + T )$$
17$C_2$ $$1 + 2 T + p T^{2}$$
good5$C_2$ $$( 1 + p T^{2} )^{2}$$
7$C_2^2$ $$1 + 2 T^{2} + p^{2} T^{4}$$
11$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )$$
13$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
19$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )$$
23$C_2^2$ $$1 - 30 T^{2} + p^{2} T^{4}$$
29$C_2$ $$( 1 + p T^{2} )^{2}$$
31$C_2^2$ $$1 - 46 T^{2} + p^{2} T^{4}$$
37$C_2$ $$( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )$$
41$C_2$ $$( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )$$
43$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )$$
47$C_2$ $$( 1 + 8 T + p T^{2} )^{2}$$
53$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
59$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
61$C_2$ $$( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )$$
67$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
71$C_2^2$ $$1 + 2 T^{2} + p^{2} T^{4}$$
73$C_2$ $$( 1 - p T^{2} )^{2}$$
79$C_2^2$ $$1 - 142 T^{2} + p^{2} T^{4}$$
83$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
89$C_2$ $$( 1 + 10 T + p T^{2} )^{2}$$
97$C_2^2$ $$1 + 62 T^{2} + p^{2} T^{4}$$
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}