Properties

Label 4-306e2-1.1-c1e2-0-14
Degree $4$
Conductor $93636$
Sign $-1$
Analytic cond. $5.97031$
Root an. cond. $1.56314$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 8·13-s + 16-s − 8·19-s − 10·25-s − 8·43-s + 8·49-s − 8·52-s + 64-s − 8·67-s − 8·76-s − 10·100-s + 16·103-s − 16·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 8·172-s + 173-s + 179-s + ⋯
L(s)  = 1  + 1/2·4-s − 2.21·13-s + 1/4·16-s − 1.83·19-s − 2·25-s − 1.21·43-s + 8/7·49-s − 1.10·52-s + 1/8·64-s − 0.977·67-s − 0.917·76-s − 100-s + 1.57·103-s − 1.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 0.609·172-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93636 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93636 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93636\)    =    \(2^{2} \cdot 3^{4} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(5.97031\)
Root analytic conductor: \(1.56314\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 93636,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3 \( 1 \)
17$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 136 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 152 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543446369074307172750812856621, −8.836121814567421222202422758879, −8.386889403396665691445955279507, −7.66573641436749242958105510005, −7.51664690408548034944308925262, −6.84329709758165845817990403900, −6.37577346645603436156860321076, −5.77718092702707556775741820236, −5.20350261603750199185464616713, −4.51381095103207980483214327883, −4.07274460094416454667100408396, −3.15777608236483761283740515215, −2.29607043290430482512450474090, −1.96076683780702048267828809735, 0, 1.96076683780702048267828809735, 2.29607043290430482512450474090, 3.15777608236483761283740515215, 4.07274460094416454667100408396, 4.51381095103207980483214327883, 5.20350261603750199185464616713, 5.77718092702707556775741820236, 6.37577346645603436156860321076, 6.84329709758165845817990403900, 7.51664690408548034944308925262, 7.66573641436749242958105510005, 8.386889403396665691445955279507, 8.836121814567421222202422758879, 9.543446369074307172750812856621

Graph of the $Z$-function along the critical line