Properties

Label 4-898425-1.1-c1e2-0-13
Degree $4$
Conductor $898425$
Sign $-1$
Analytic cond. $57.2843$
Root an. cond. $2.75111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 2·5-s + 8·7-s + 9-s + 11-s + 3·12-s − 4·13-s + 2·15-s + 5·16-s + 6·20-s − 8·21-s + 16·23-s − 25-s − 27-s − 24·28-s − 12·29-s − 16·31-s − 33-s − 16·35-s − 3·36-s + 4·39-s − 4·41-s − 3·44-s − 2·45-s + 16·47-s − 5·48-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 0.894·5-s + 3.02·7-s + 1/3·9-s + 0.301·11-s + 0.866·12-s − 1.10·13-s + 0.516·15-s + 5/4·16-s + 1.34·20-s − 1.74·21-s + 3.33·23-s − 1/5·25-s − 0.192·27-s − 4.53·28-s − 2.22·29-s − 2.87·31-s − 0.174·33-s − 2.70·35-s − 1/2·36-s + 0.640·39-s − 0.624·41-s − 0.452·44-s − 0.298·45-s + 2.33·47-s − 0.721·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 898425 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 898425 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(898425\)    =    \(3^{3} \cdot 5^{2} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(57.2843\)
Root analytic conductor: \(2.75111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 898425,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_1$ \( 1 - T \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79101895179999134898029078018, −7.46995816184461358823952634116, −7.34601044884367932382345575150, −7.05600568622891462785206372993, −5.76056742151642236308772717701, −5.31622482563829752699303340190, −5.22230213194494274186098395770, −4.89278601644343569167887115386, −4.20407903283329927801590362766, −4.12409294145617767495393362584, −3.48633281058109070313520618744, −2.41462719981728251439673819431, −1.63597502002402518830188706838, −1.08883443120144341691261701954, 0, 1.08883443120144341691261701954, 1.63597502002402518830188706838, 2.41462719981728251439673819431, 3.48633281058109070313520618744, 4.12409294145617767495393362584, 4.20407903283329927801590362766, 4.89278601644343569167887115386, 5.22230213194494274186098395770, 5.31622482563829752699303340190, 5.76056742151642236308772717701, 7.05600568622891462785206372993, 7.34601044884367932382345575150, 7.46995816184461358823952634116, 7.79101895179999134898029078018

Graph of the $Z$-function along the critical line