Properties

Label 4-877952-1.1-c1e2-0-2
Degree $4$
Conductor $877952$
Sign $-1$
Analytic cond. $55.9789$
Root an. cond. $2.73530$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 5·9-s − 12·11-s + 10·13-s + 16-s + 6·17-s + 5·18-s + 19-s + 12·22-s − 10·25-s − 10·26-s + 18·29-s − 8·31-s − 32-s − 6·34-s − 5·36-s + 4·37-s − 38-s + 16·43-s − 12·44-s − 13·49-s + 10·50-s + 10·52-s − 6·53-s − 18·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 5/3·9-s − 3.61·11-s + 2.77·13-s + 1/4·16-s + 1.45·17-s + 1.17·18-s + 0.229·19-s + 2.55·22-s − 2·25-s − 1.96·26-s + 3.34·29-s − 1.43·31-s − 0.176·32-s − 1.02·34-s − 5/6·36-s + 0.657·37-s − 0.162·38-s + 2.43·43-s − 1.80·44-s − 1.85·49-s + 1.41·50-s + 1.38·52-s − 0.824·53-s − 2.36·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 877952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 877952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(877952\)    =    \(2^{7} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(55.9789\)
Root analytic conductor: \(2.73530\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 877952,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
19$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.895349544747219426101327340569, −7.73591843742988285704805588989, −7.55387598440628310474150895416, −6.51678176774053671258970671852, −5.84120552555487673973212425580, −5.81027585652647529822118508915, −5.68309337660531866369187028825, −4.89812282859220086788968346022, −4.28044972533877048207987886223, −3.31668847110395308659409555660, −2.99432139105097413830284496966, −2.79906366636498682136535089092, −1.91153416476236487854080031114, −0.932303105265167456620735982403, 0, 0.932303105265167456620735982403, 1.91153416476236487854080031114, 2.79906366636498682136535089092, 2.99432139105097413830284496966, 3.31668847110395308659409555660, 4.28044972533877048207987886223, 4.89812282859220086788968346022, 5.68309337660531866369187028825, 5.81027585652647529822118508915, 5.84120552555487673973212425580, 6.51678176774053671258970671852, 7.55387598440628310474150895416, 7.73591843742988285704805588989, 7.895349544747219426101327340569

Graph of the $Z$-function along the critical line