Properties

Label 4-739328-1.1-c1e2-0-0
Degree $4$
Conductor $739328$
Sign $1$
Analytic cond. $47.1401$
Root an. cond. $2.62028$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 12·13-s + 4·17-s − 6·25-s + 20·29-s + 4·37-s − 14·49-s − 28·53-s − 12·73-s + 27·81-s − 12·109-s + 72·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2·9-s − 3.32·13-s + 0.970·17-s − 6/5·25-s + 3.71·29-s + 0.657·37-s − 2·49-s − 3.84·53-s − 1.40·73-s + 3·81-s − 1.14·109-s + 6.65·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(739328\)    =    \(2^{11} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(47.1401\)
Root analytic conductor: \(2.62028\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 739328,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5576512069\)
\(L(\frac12)\) \(\approx\) \(0.5576512069\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.035633245388709370571716042261, −7.86574055998535746161422058704, −7.73630992013967249030286412366, −6.88285670880247123083130737223, −6.30716226871544921289489966674, −6.27282080646876620831649653268, −5.37992284390661851947295266891, −5.01452297596172644651029655270, −4.82921904093509058229868062887, −4.20356717926205030820044117468, −3.08834105264637113474204550774, −2.87014543676053805155617724658, −2.63895104553179739845027310173, −1.68650360107442207365312439133, −0.34388316717206213591546404511, 0.34388316717206213591546404511, 1.68650360107442207365312439133, 2.63895104553179739845027310173, 2.87014543676053805155617724658, 3.08834105264637113474204550774, 4.20356717926205030820044117468, 4.82921904093509058229868062887, 5.01452297596172644651029655270, 5.37992284390661851947295266891, 6.27282080646876620831649653268, 6.30716226871544921289489966674, 6.88285670880247123083130737223, 7.73630992013967249030286412366, 7.86574055998535746161422058704, 8.035633245388709370571716042261

Graph of the $Z$-function along the critical line