Properties

Label 4-84672-1.1-c1e2-0-15
Degree $4$
Conductor $84672$
Sign $1$
Analytic cond. $5.39876$
Root an. cond. $1.52431$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 12·11-s + 4·13-s + 12·23-s − 10·25-s − 27-s − 12·33-s + 4·37-s − 4·39-s − 24·47-s + 49-s − 20·61-s − 12·69-s − 12·71-s − 20·73-s + 10·75-s + 81-s + 24·83-s − 20·97-s + 12·99-s + 12·107-s + 28·109-s − 4·111-s + 4·117-s + 86·121-s + 127-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 3.61·11-s + 1.10·13-s + 2.50·23-s − 2·25-s − 0.192·27-s − 2.08·33-s + 0.657·37-s − 0.640·39-s − 3.50·47-s + 1/7·49-s − 2.56·61-s − 1.44·69-s − 1.42·71-s − 2.34·73-s + 1.15·75-s + 1/9·81-s + 2.63·83-s − 2.03·97-s + 1.20·99-s + 1.16·107-s + 2.68·109-s − 0.379·111-s + 0.369·117-s + 7.81·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(84672\)    =    \(2^{6} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(5.39876\)
Root analytic conductor: \(1.52431\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 84672,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.648773141\)
\(L(\frac12)\) \(\approx\) \(1.648773141\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.542934180818189537522408595040, −9.072046417107109896038765861128, −9.052436712736537682628040663330, −8.300043091642042619777544931378, −7.58881932943940700511157248554, −6.93446262615281462668117301613, −6.58911559432542935222512700270, −6.11056271857714724112691707067, −5.84091064569873502208467244139, −4.63917458628061830491997962672, −4.46733872516772697970621091271, −3.53462971911322619523210724383, −3.36010318341016445358722759890, −1.58867103529813382887688476545, −1.28052617279627540057290389597, 1.28052617279627540057290389597, 1.58867103529813382887688476545, 3.36010318341016445358722759890, 3.53462971911322619523210724383, 4.46733872516772697970621091271, 4.63917458628061830491997962672, 5.84091064569873502208467244139, 6.11056271857714724112691707067, 6.58911559432542935222512700270, 6.93446262615281462668117301613, 7.58881932943940700511157248554, 8.300043091642042619777544931378, 9.052436712736537682628040663330, 9.072046417107109896038765861128, 9.542934180818189537522408595040

Graph of the $Z$-function along the critical line