Properties

Label 4-691488-1.1-c1e2-0-4
Degree $4$
Conductor $691488$
Sign $1$
Analytic cond. $44.0898$
Root an. cond. $2.57682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 2·12-s + 8·13-s + 16-s − 18-s − 2·24-s − 10·25-s − 8·26-s − 4·27-s − 32-s + 36-s + 4·37-s + 16·39-s + 24·47-s + 2·48-s + 10·50-s + 8·52-s + 4·54-s + 12·59-s − 16·61-s + 64-s − 72-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.577·12-s + 2.21·13-s + 1/4·16-s − 0.235·18-s − 0.408·24-s − 2·25-s − 1.56·26-s − 0.769·27-s − 0.176·32-s + 1/6·36-s + 0.657·37-s + 2.56·39-s + 3.50·47-s + 0.288·48-s + 1.41·50-s + 1.10·52-s + 0.544·54-s + 1.56·59-s − 2.04·61-s + 1/8·64-s − 0.117·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 691488 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 691488 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(691488\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(44.0898\)
Root analytic conductor: \(2.57682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 691488,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.318542380\)
\(L(\frac12)\) \(\approx\) \(2.318542380\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7 \( 1 \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.573529742090186402738055178368, −7.88115201382147028507134927026, −7.55563465371540871894331307120, −7.39293674981761532961441986375, −6.43902889849944115155691598253, −6.12986038892916091786195943044, −5.83259812621372959122100845675, −5.25590580602395553760699468065, −4.24465289176609138955904372614, −3.87985229263682105648190826671, −3.56550924639142318669266713404, −2.84501304641458537647904209821, −2.25140513775369021989127014661, −1.67921161671410140538744564928, −0.818365395076437722978448101852, 0.818365395076437722978448101852, 1.67921161671410140538744564928, 2.25140513775369021989127014661, 2.84501304641458537647904209821, 3.56550924639142318669266713404, 3.87985229263682105648190826671, 4.24465289176609138955904372614, 5.25590580602395553760699468065, 5.83259812621372959122100845675, 6.12986038892916091786195943044, 6.43902889849944115155691598253, 7.39293674981761532961441986375, 7.55563465371540871894331307120, 7.88115201382147028507134927026, 8.573529742090186402738055178368

Graph of the $Z$-function along the critical line