Properties

Label 4-56448-1.1-c1e2-0-9
Degree $4$
Conductor $56448$
Sign $1$
Analytic cond. $3.59917$
Root an. cond. $1.37737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 8·11-s + 4·13-s − 6·25-s − 4·37-s + 16·47-s + 49-s − 12·61-s + 16·71-s + 20·73-s + 9·81-s − 16·83-s − 12·97-s − 24·99-s + 24·107-s − 20·109-s − 12·117-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 32·143-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 9-s + 2.41·11-s + 1.10·13-s − 6/5·25-s − 0.657·37-s + 2.33·47-s + 1/7·49-s − 1.53·61-s + 1.89·71-s + 2.34·73-s + 81-s − 1.75·83-s − 1.21·97-s − 2.41·99-s + 2.32·107-s − 1.91·109-s − 1.10·117-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56448 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56448 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(56448\)    =    \(2^{7} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(3.59917\)
Root analytic conductor: \(1.37737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 56448,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.522064778\)
\(L(\frac12)\) \(\approx\) \(1.522064778\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.886707849578587066687733658491, −9.256691510852288615675806117776, −9.117894034638208548514808203742, −8.560607806232820418165457845354, −8.093537689649372229665039418958, −7.40397429472305265033368100557, −6.67949194679031572918581545842, −6.35373904523042773985731435784, −5.82613210142107824134972732669, −5.29340219049011126125230323142, −4.18465932715971087267449515138, −3.89550776474805329328185747620, −3.26735667825841356907489548421, −2.14556791802447766709825303506, −1.15037892508990574535308118020, 1.15037892508990574535308118020, 2.14556791802447766709825303506, 3.26735667825841356907489548421, 3.89550776474805329328185747620, 4.18465932715971087267449515138, 5.29340219049011126125230323142, 5.82613210142107824134972732669, 6.35373904523042773985731435784, 6.67949194679031572918581545842, 7.40397429472305265033368100557, 8.093537689649372229665039418958, 8.560607806232820418165457845354, 9.117894034638208548514808203742, 9.256691510852288615675806117776, 9.886707849578587066687733658491

Graph of the $Z$-function along the critical line