Dirichlet series
L(s) = 1 | + 2·3-s + 3·9-s + 8·11-s + 4·17-s + 8·19-s − 6·25-s + 4·27-s + 16·33-s − 12·41-s + 8·43-s + 49-s + 8·51-s + 16·57-s − 8·59-s − 8·67-s + 20·73-s − 12·75-s + 5·81-s + 8·83-s − 12·89-s − 28·97-s + 24·99-s − 24·107-s − 28·113-s + 26·121-s − 24·123-s + 127-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s + 2.41·11-s + 0.970·17-s + 1.83·19-s − 6/5·25-s + 0.769·27-s + 2.78·33-s − 1.87·41-s + 1.21·43-s + 1/7·49-s + 1.12·51-s + 2.11·57-s − 1.04·59-s − 0.977·67-s + 2.34·73-s − 1.38·75-s + 5/9·81-s + 0.878·83-s − 1.27·89-s − 2.84·97-s + 2.41·99-s − 2.32·107-s − 2.63·113-s + 2.36·121-s − 2.16·123-s + 0.0887·127-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(451584\) = \(2^{10} \cdot 3^{2} \cdot 7^{2}\) |
Sign: | $1$ |
Motivic weight: | \(1\) |
Character: | $\chi_{451584} (1, \cdot )$ |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 451584,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
\(L(1)\) | \(\approx\) | \(3.875464647\) |
\(L(\frac12)\) | \(\approx\) | \(3.875464647\) |
\(L(\frac{3}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | \( 1 \) | |
3 | $C_1$ | \( ( 1 - T )^{2} \) | |
7 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) | |
good | 5 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | |
13 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) | |
19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | |
23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | |
29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | |
31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | |
41 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) | |
43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | |
47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
59 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | |
61 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | |
67 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | |
71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | |
73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) | |
79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | |
83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | |
89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) | |
97 | $C_2$ | \( ( 1 + 14 T + p T^{2} )^{2} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−8.579197535720292899748335278003, −7.963562405403294064353399542187, −7.941030481552254497163330431349, −7.14585602865319249961807679325, −6.89499765960031010222506198709, −6.43557747993001049134741297977, −5.69761771888975023011122238972, −5.40100953109829334895217907278, −4.54031360247962128301261767712, −4.04752481141371955267217260485, −3.54052974946578322805924483948, −3.29683272363669349411451437037, −2.47888758091438588042078740356, −1.50800619952171259085588630937, −1.23111713389498587746226154587, 1.23111713389498587746226154587, 1.50800619952171259085588630937, 2.47888758091438588042078740356, 3.29683272363669349411451437037, 3.54052974946578322805924483948, 4.04752481141371955267217260485, 4.54031360247962128301261767712, 5.40100953109829334895217907278, 5.69761771888975023011122238972, 6.43557747993001049134741297977, 6.89499765960031010222506198709, 7.14585602865319249961807679325, 7.941030481552254497163330431349, 7.963562405403294064353399542187, 8.579197535720292899748335278003