Properties

Label 4-176e2-1.1-c1e2-0-2
Degree $4$
Conductor $30976$
Sign $1$
Analytic cond. $1.97505$
Root an. cond. $1.18548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·9-s − 2·11-s + 12·17-s + 16·19-s − 25-s − 14·27-s − 4·33-s − 20·43-s − 10·49-s + 24·51-s + 32·57-s + 6·59-s − 2·67-s − 8·73-s − 2·75-s − 4·81-s + 12·83-s − 18·89-s − 14·97-s + 6·99-s + 12·107-s − 30·113-s + 3·121-s + 127-s − 40·129-s + 131-s + ⋯
L(s)  = 1  + 1.15·3-s − 9-s − 0.603·11-s + 2.91·17-s + 3.67·19-s − 1/5·25-s − 2.69·27-s − 0.696·33-s − 3.04·43-s − 1.42·49-s + 3.36·51-s + 4.23·57-s + 0.781·59-s − 0.244·67-s − 0.936·73-s − 0.230·75-s − 4/9·81-s + 1.31·83-s − 1.90·89-s − 1.42·97-s + 0.603·99-s + 1.16·107-s − 2.82·113-s + 3/11·121-s + 0.0887·127-s − 3.52·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30976 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(30976\)    =    \(2^{8} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1.97505\)
Root analytic conductor: \(1.18548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 30976,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.737676634\)
\(L(\frac12)\) \(\approx\) \(1.737676634\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11903216163362853339678805280, −9.813753565180213813561671136388, −9.610210113213273792621314474885, −8.901169398745525002958448579942, −8.132665807481574488057539990847, −7.948144712624414981153354525702, −7.60852684015633966980596452192, −6.87940646463052539617018989539, −5.72427671804102205390312745209, −5.44949075059971672760817509463, −5.11227132195889762323685903220, −3.47350326380949607246521494930, −3.27381985666804460223319703873, −2.88597193878705003332421314931, −1.40865503128588890763537566425, 1.40865503128588890763537566425, 2.88597193878705003332421314931, 3.27381985666804460223319703873, 3.47350326380949607246521494930, 5.11227132195889762323685903220, 5.44949075059971672760817509463, 5.72427671804102205390312745209, 6.87940646463052539617018989539, 7.60852684015633966980596452192, 7.948144712624414981153354525702, 8.132665807481574488057539990847, 8.901169398745525002958448579942, 9.610210113213273792621314474885, 9.813753565180213813561671136388, 10.11903216163362853339678805280

Graph of the $Z$-function along the critical line