Properties

Label 4-1632e2-1.1-c1e2-0-33
Degree $4$
Conductor $2663424$
Sign $-1$
Analytic cond. $169.822$
Root an. cond. $3.60992$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 8·11-s + 2·17-s − 8·19-s − 6·25-s − 4·27-s − 16·33-s + 20·41-s − 24·43-s − 14·49-s − 4·51-s + 16·57-s − 24·59-s + 24·67-s + 20·73-s + 12·75-s + 5·81-s − 8·83-s − 12·89-s − 28·97-s + 24·99-s + 8·107-s + 4·113-s + 26·121-s − 40·123-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s + 2.41·11-s + 0.485·17-s − 1.83·19-s − 6/5·25-s − 0.769·27-s − 2.78·33-s + 3.12·41-s − 3.65·43-s − 2·49-s − 0.560·51-s + 2.11·57-s − 3.12·59-s + 2.93·67-s + 2.34·73-s + 1.38·75-s + 5/9·81-s − 0.878·83-s − 1.27·89-s − 2.84·97-s + 2.41·99-s + 0.773·107-s + 0.376·113-s + 2.36·121-s − 3.60·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2663424\)    =    \(2^{10} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(169.822\)
Root analytic conductor: \(3.60992\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2663424,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22142790948264379459326388401, −6.69848386214369198167777203066, −6.46056135767183933567189521369, −6.37869009161194820234692371426, −5.81286052920193080307583986322, −5.36244298721167160718725340278, −4.79105665208598685854610251022, −4.24541437163957543556604196065, −4.13815320087610274634408079960, −3.56656081546400251035965478912, −3.00991765579318910790552780461, −1.85270319908183405578953120836, −1.78155952274398559703453953653, −0.953921632956008845825292771843, 0, 0.953921632956008845825292771843, 1.78155952274398559703453953653, 1.85270319908183405578953120836, 3.00991765579318910790552780461, 3.56656081546400251035965478912, 4.13815320087610274634408079960, 4.24541437163957543556604196065, 4.79105665208598685854610251022, 5.36244298721167160718725340278, 5.81286052920193080307583986322, 6.37869009161194820234692371426, 6.46056135767183933567189521369, 6.69848386214369198167777203066, 7.22142790948264379459326388401

Graph of the $Z$-function along the critical line