Properties

Label 4-1632e2-1.1-c1e2-0-24
Degree $4$
Conductor $2663424$
Sign $1$
Analytic cond. $169.822$
Root an. cond. $3.60992$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 2·11-s + 2·17-s + 14·19-s − 25-s − 4·27-s + 4·33-s + 14·41-s + 2·43-s + 2·49-s − 4·51-s − 28·57-s + 20·59-s + 24·67-s − 28·73-s + 2·75-s + 5·81-s + 28·83-s + 16·89-s + 24·97-s − 6·99-s − 26·107-s − 38·113-s − 19·121-s − 28·123-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 0.603·11-s + 0.485·17-s + 3.21·19-s − 1/5·25-s − 0.769·27-s + 0.696·33-s + 2.18·41-s + 0.304·43-s + 2/7·49-s − 0.560·51-s − 3.70·57-s + 2.60·59-s + 2.93·67-s − 3.27·73-s + 0.230·75-s + 5/9·81-s + 3.07·83-s + 1.69·89-s + 2.43·97-s − 0.603·99-s − 2.51·107-s − 3.57·113-s − 1.72·121-s − 2.52·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2663424 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2663424\)    =    \(2^{10} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(169.822\)
Root analytic conductor: \(3.60992\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2663424,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.924335194\)
\(L(\frac12)\) \(\approx\) \(1.924335194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72417736726020375123060781448, −7.10862606316740176491095490628, −6.86331177018920388447026866658, −6.32126457742274162742887328772, −5.63763740224640266713998216932, −5.57392449844244671802827644030, −5.24158903396702022407128081594, −4.81536414408362940263533105554, −4.13220745200772588524548445751, −3.73278236399044089261498793654, −3.15894889975583292757146607138, −2.63789286879136207172642804519, −1.94843284288093064344150345230, −0.906565211409185083613124704727, −0.829941819698449579623233485859, 0.829941819698449579623233485859, 0.906565211409185083613124704727, 1.94843284288093064344150345230, 2.63789286879136207172642804519, 3.15894889975583292757146607138, 3.73278236399044089261498793654, 4.13220745200772588524548445751, 4.81536414408362940263533105554, 5.24158903396702022407128081594, 5.57392449844244671802827644030, 5.63763740224640266713998216932, 6.32126457742274162742887328772, 6.86331177018920388447026866658, 7.10862606316740176491095490628, 7.72417736726020375123060781448

Graph of the $Z$-function along the critical line