Properties

Label 4-152e2-1.1-c1e2-0-2
Degree $4$
Conductor $23104$
Sign $-1$
Analytic cond. $1.47313$
Root an. cond. $1.10169$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·4-s + 6·9-s + 6·11-s + 8·12-s + 4·16-s − 6·17-s + 2·19-s − 25-s + 4·27-s − 24·33-s − 12·36-s − 12·41-s − 2·43-s − 12·44-s − 16·48-s − 13·49-s + 24·51-s − 8·57-s − 12·59-s − 8·64-s − 8·67-s + 12·68-s − 14·73-s + 4·75-s − 4·76-s − 37·81-s + ⋯
L(s)  = 1  − 2.30·3-s − 4-s + 2·9-s + 1.80·11-s + 2.30·12-s + 16-s − 1.45·17-s + 0.458·19-s − 1/5·25-s + 0.769·27-s − 4.17·33-s − 2·36-s − 1.87·41-s − 0.304·43-s − 1.80·44-s − 2.30·48-s − 1.85·49-s + 3.36·51-s − 1.05·57-s − 1.56·59-s − 64-s − 0.977·67-s + 1.45·68-s − 1.63·73-s + 0.461·75-s − 0.458·76-s − 4.11·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(23104\)    =    \(2^{6} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(1.47313\)
Root analytic conductor: \(1.10169\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 23104,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49533789550642470301568900791, −10.24320445923116880350231460909, −9.199158339911279140575946730378, −9.180168549070062598241568188033, −8.462914393396165009068265832341, −7.65894969899749366452649043261, −6.68601933176938591059893570713, −6.39084306102520193435942181609, −6.07700564140158959836320975863, −5.03912355415234199771433602492, −4.96903618429312636799150610379, −4.19306407725294924458030580762, −3.33866387034377157662854676826, −1.39430917521719853589747801849, 0, 1.39430917521719853589747801849, 3.33866387034377157662854676826, 4.19306407725294924458030580762, 4.96903618429312636799150610379, 5.03912355415234199771433602492, 6.07700564140158959836320975863, 6.39084306102520193435942181609, 6.68601933176938591059893570713, 7.65894969899749366452649043261, 8.462914393396165009068265832341, 9.180168549070062598241568188033, 9.199158339911279140575946730378, 10.24320445923116880350231460909, 10.49533789550642470301568900791

Graph of the $Z$-function along the critical line