Properties

Label 4-384e2-1.1-c1e2-0-25
Degree $4$
Conductor $147456$
Sign $-1$
Analytic cond. $9.40192$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 8·11-s + 12·17-s − 10·25-s − 4·27-s + 16·33-s − 4·41-s + 16·43-s − 10·49-s − 24·51-s − 8·59-s + 8·67-s − 20·73-s + 20·75-s + 5·81-s + 24·83-s + 4·89-s − 12·97-s − 24·99-s − 24·107-s − 28·113-s + 26·121-s + 8·123-s + 127-s − 32·129-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 2.41·11-s + 2.91·17-s − 2·25-s − 0.769·27-s + 2.78·33-s − 0.624·41-s + 2.43·43-s − 1.42·49-s − 3.36·51-s − 1.04·59-s + 0.977·67-s − 2.34·73-s + 2.30·75-s + 5/9·81-s + 2.63·83-s + 0.423·89-s − 1.21·97-s − 2.41·99-s − 2.32·107-s − 2.63·113-s + 2.36·121-s + 0.721·123-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(147456\)    =    \(2^{14} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(9.40192\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 147456,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.355375973689939441990781827382, −8.272861522300808832842531458007, −7.83756825226352882885863464519, −7.73185283482156320096864018539, −7.29744951786402483785793531451, −6.40139715881748782453956361829, −5.81271121311664380914911812156, −5.52928834758807112839354938677, −5.25073137830748218691985779847, −4.57667813854686016923499181308, −3.77490371552045331982722842815, −3.12662782741322079682173901720, −2.36547685273488160999702672858, −1.27109672072212401682622254955, 0, 1.27109672072212401682622254955, 2.36547685273488160999702672858, 3.12662782741322079682173901720, 3.77490371552045331982722842815, 4.57667813854686016923499181308, 5.25073137830748218691985779847, 5.52928834758807112839354938677, 5.81271121311664380914911812156, 6.40139715881748782453956361829, 7.29744951786402483785793531451, 7.73185283482156320096864018539, 7.83756825226352882885863464519, 8.272861522300808832842531458007, 9.355375973689939441990781827382

Graph of the $Z$-function along the critical line