Properties

Label 4-139392-1.1-c1e2-0-46
Degree $4$
Conductor $139392$
Sign $-1$
Analytic cond. $8.88775$
Root an. cond. $1.72662$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 3·9-s − 2·11-s + 2·12-s + 16-s − 12·17-s − 3·18-s − 8·19-s + 2·22-s − 2·24-s − 10·25-s + 4·27-s − 32-s − 4·33-s + 12·34-s + 3·36-s + 8·38-s + 12·41-s + 16·43-s − 2·44-s + 2·48-s − 10·49-s + 10·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 9-s − 0.603·11-s + 0.577·12-s + 1/4·16-s − 2.91·17-s − 0.707·18-s − 1.83·19-s + 0.426·22-s − 0.408·24-s − 2·25-s + 0.769·27-s − 0.176·32-s − 0.696·33-s + 2.05·34-s + 1/2·36-s + 1.29·38-s + 1.87·41-s + 2.43·43-s − 0.301·44-s + 0.288·48-s − 1.42·49-s + 1.41·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139392 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139392 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(139392\)    =    \(2^{7} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(8.88775\)
Root analytic conductor: \(1.72662\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 139392,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( ( 1 - T )^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.958855021658912251315559727512, −8.887891532747829374104895475794, −8.013104010237496671597514230187, −7.935843343791211954271432561876, −7.28527342169643413043846575990, −6.77506565559004391547494912024, −6.17174530290345741608508655802, −5.87020148568317205580403494022, −4.69333471332706230755932945396, −4.23690400616092916957233780303, −3.91425307940557450920960721713, −2.68572029653394044118459270403, −2.37545091357255938865951638025, −1.82843170642390821308972267128, 0, 1.82843170642390821308972267128, 2.37545091357255938865951638025, 2.68572029653394044118459270403, 3.91425307940557450920960721713, 4.23690400616092916957233780303, 4.69333471332706230755932945396, 5.87020148568317205580403494022, 6.17174530290345741608508655802, 6.77506565559004391547494912024, 7.28527342169643413043846575990, 7.935843343791211954271432561876, 8.013104010237496671597514230187, 8.887891532747829374104895475794, 8.958855021658912251315559727512

Graph of the $Z$-function along the critical line