Properties

Label 4-115200-1.1-c1e2-0-9
Degree $4$
Conductor $115200$
Sign $1$
Analytic cond. $7.34525$
Root an. cond. $1.64627$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s − 4·17-s + 8·19-s + 25-s + 4·27-s + 20·41-s − 8·43-s + 2·49-s − 8·51-s + 16·57-s − 8·67-s − 28·73-s + 2·75-s + 5·81-s + 24·83-s + 4·89-s + 4·97-s + 8·107-s + 12·113-s − 22·121-s + 40·123-s + 127-s − 16·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s − 0.970·17-s + 1.83·19-s + 1/5·25-s + 0.769·27-s + 3.12·41-s − 1.21·43-s + 2/7·49-s − 1.12·51-s + 2.11·57-s − 0.977·67-s − 3.27·73-s + 0.230·75-s + 5/9·81-s + 2.63·83-s + 0.423·89-s + 0.406·97-s + 0.773·107-s + 1.12·113-s − 2·121-s + 3.60·123-s + 0.0887·127-s − 1.40·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(115200\)    =    \(2^{9} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(7.34525\)
Root analytic conductor: \(1.64627\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 115200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.461853696\)
\(L(\frac12)\) \(\approx\) \(2.461853696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.192233856919801710529869731712, −9.138788409882082860623313179234, −8.620274137521206455931441584726, −7.929044973464791963060046214031, −7.45166089807995498253197140252, −7.34594365176835478558310775458, −6.49211773175788373093258725474, −6.00871420537581383609527234257, −5.28897888504504330389281711769, −4.63883887090438359185158186412, −4.13728859524865050162716547657, −3.39015414339768891989414504202, −2.85965731186513405981248890470, −2.19180563382997996757520036314, −1.16849564057756810686392475492, 1.16849564057756810686392475492, 2.19180563382997996757520036314, 2.85965731186513405981248890470, 3.39015414339768891989414504202, 4.13728859524865050162716547657, 4.63883887090438359185158186412, 5.28897888504504330389281711769, 6.00871420537581383609527234257, 6.49211773175788373093258725474, 7.34594365176835478558310775458, 7.45166089807995498253197140252, 7.929044973464791963060046214031, 8.620274137521206455931441584726, 9.138788409882082860623313179234, 9.192233856919801710529869731712

Graph of the $Z$-function along the critical line