Properties

Label 4-1056e2-1.1-c1e2-0-58
Degree $4$
Conductor $1115136$
Sign $1$
Analytic cond. $71.1020$
Root an. cond. $2.90382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 2·11-s + 12·17-s + 16·19-s − 6·25-s − 4·27-s − 4·33-s − 20·41-s + 16·43-s + 2·49-s − 24·51-s − 32·57-s − 8·59-s + 24·67-s + 4·73-s + 12·75-s + 5·81-s + 24·83-s − 12·89-s + 4·97-s + 6·99-s − 24·107-s + 20·113-s + 3·121-s + 40·123-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s + 0.603·11-s + 2.91·17-s + 3.67·19-s − 6/5·25-s − 0.769·27-s − 0.696·33-s − 3.12·41-s + 2.43·43-s + 2/7·49-s − 3.36·51-s − 4.23·57-s − 1.04·59-s + 2.93·67-s + 0.468·73-s + 1.38·75-s + 5/9·81-s + 2.63·83-s − 1.27·89-s + 0.406·97-s + 0.603·99-s − 2.32·107-s + 1.88·113-s + 3/11·121-s + 3.60·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1115136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1115136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1115136\)    =    \(2^{10} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(71.1020\)
Root analytic conductor: \(2.90382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1115136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.015927381\)
\(L(\frac12)\) \(\approx\) \(2.015927381\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.024470565850335561462456684411, −7.56089293819005546804727949953, −7.19819071506851382078022350491, −6.82430943807879406400182869542, −6.19015485249586140740060842128, −5.56993690843411272942663805412, −5.46405190258323470080919041481, −5.27293036458461851477097267556, −4.57486609696928672939637526621, −3.76305426337925729255035834153, −3.38108759817336471336235218518, −3.16578625772066727003923663964, −1.96689570329397719651168220011, −1.10197409729490824142182868653, −0.918992040659386671383695016650, 0.918992040659386671383695016650, 1.10197409729490824142182868653, 1.96689570329397719651168220011, 3.16578625772066727003923663964, 3.38108759817336471336235218518, 3.76305426337925729255035834153, 4.57486609696928672939637526621, 5.27293036458461851477097267556, 5.46405190258323470080919041481, 5.56993690843411272942663805412, 6.19015485249586140740060842128, 6.82430943807879406400182869542, 7.19819071506851382078022350491, 7.56089293819005546804727949953, 8.024470565850335561462456684411

Graph of the $Z$-function along the critical line