Properties

Label 4-264e2-1.1-c1e2-0-30
Degree $4$
Conductor $69696$
Sign $-1$
Analytic cond. $4.44387$
Root an. cond. $1.45191$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s − 2·6-s − 3·8-s + 3·9-s + 2·11-s + 2·12-s − 16-s − 4·17-s + 3·18-s + 2·22-s + 6·24-s − 6·25-s − 4·27-s + 5·32-s − 4·33-s − 4·34-s − 3·36-s − 4·41-s − 2·44-s + 2·48-s + 2·49-s − 6·50-s + 8·51-s − 4·54-s − 8·59-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s − 0.816·6-s − 1.06·8-s + 9-s + 0.603·11-s + 0.577·12-s − 1/4·16-s − 0.970·17-s + 0.707·18-s + 0.426·22-s + 1.22·24-s − 6/5·25-s − 0.769·27-s + 0.883·32-s − 0.696·33-s − 0.685·34-s − 1/2·36-s − 0.624·41-s − 0.301·44-s + 0.288·48-s + 2/7·49-s − 0.848·50-s + 1.12·51-s − 0.544·54-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(69696\)    =    \(2^{6} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(4.44387\)
Root analytic conductor: \(1.45191\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 69696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.707415080973846397836109340574, −8.975261543279013968212899152873, −8.875675328772527825961545316041, −7.965954059246732200439764911687, −7.46995816184461358823952634116, −6.70418908817771650365413799438, −6.33644802733938487268952260308, −5.84871034939782789631443011618, −5.31622482563829752699303340190, −4.70993425864659877425168996437, −4.20407903283329927801590362766, −3.73471833099679066824930451074, −2.75044853344397076993328420584, −1.54953448111991999222312546648, 0, 1.54953448111991999222312546648, 2.75044853344397076993328420584, 3.73471833099679066824930451074, 4.20407903283329927801590362766, 4.70993425864659877425168996437, 5.31622482563829752699303340190, 5.84871034939782789631443011618, 6.33644802733938487268952260308, 6.70418908817771650365413799438, 7.46995816184461358823952634116, 7.965954059246732200439764911687, 8.875675328772527825961545316041, 8.975261543279013968212899152873, 9.707415080973846397836109340574

Graph of the $Z$-function along the critical line