Properties

Label 4-693e2-1.1-c1e2-0-16
Degree $4$
Conductor $480249$
Sign $-1$
Analytic cond. $30.6210$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4-s + 4·7-s + 8·8-s − 2·11-s − 8·14-s − 7·16-s + 4·22-s − 16·23-s − 6·25-s − 4·28-s + 12·29-s − 14·32-s + 12·37-s + 2·44-s + 32·46-s + 9·49-s + 12·50-s − 12·53-s + 32·56-s − 24·58-s + 35·64-s − 8·67-s − 24·74-s − 8·77-s − 8·79-s − 16·88-s + ⋯
L(s)  = 1  − 1.41·2-s − 1/2·4-s + 1.51·7-s + 2.82·8-s − 0.603·11-s − 2.13·14-s − 7/4·16-s + 0.852·22-s − 3.33·23-s − 6/5·25-s − 0.755·28-s + 2.22·29-s − 2.47·32-s + 1.97·37-s + 0.301·44-s + 4.71·46-s + 9/7·49-s + 1.69·50-s − 1.64·53-s + 4.27·56-s − 3.15·58-s + 35/8·64-s − 0.977·67-s − 2.78·74-s − 0.911·77-s − 0.900·79-s − 1.70·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(480249\)    =    \(3^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(30.6210\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 480249,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.389268452519734683124359977272, −8.092649848612792766954418771551, −7.60731726518247812897599595849, −7.55113610427119386648970831546, −6.55118736577760269645886929040, −5.83278296173294764308357143188, −5.64913594526162848677189952595, −4.65970646396455232760718697930, −4.52395871965258729630923756023, −4.28499925734034658438358048834, −3.43632280535116392331032608080, −2.26752106768048411048763527476, −1.82001999803537272093437549398, −1.03326922256959689494698211571, 0, 1.03326922256959689494698211571, 1.82001999803537272093437549398, 2.26752106768048411048763527476, 3.43632280535116392331032608080, 4.28499925734034658438358048834, 4.52395871965258729630923756023, 4.65970646396455232760718697930, 5.64913594526162848677189952595, 5.83278296173294764308357143188, 6.55118736577760269645886929040, 7.55113610427119386648970831546, 7.60731726518247812897599595849, 8.092649848612792766954418771551, 8.389268452519734683124359977272

Graph of the $Z$-function along the critical line